Skip to main content
Log in

Le point sur les signatures moléculaires dans le cancer du sein

Update on molecular signatures in breast cancer

  • Synthèse / Review Article
  • Published:
Oncologie

Abstract

Routine clinical and pathological criteria cannot precisely determine the individual prognosis of breast cancer patients, leading to the “over-treatment” of many of them. Three intermediate- or high-throughput, gene-expression-based tools have been developed to make up for this lack of precision. After validation studies on independent series, they are now commercially available. Trials are in progress to assess their real clinical benefits in terms of the determination of prognosis and an enhanced-therapeutic-decision process. These first-generation molecular signatures rely mostly on estrogen receptors, HER2, and proliferation. Would a prognostic algorithm, based on a combination of a well-calibrated determination by immunohistochemistry of these markers, give as much information? This question needs to be addressed.

Résumé

Les critères usuels cliniques et pathologiques ne permettent pas de définir précisément le pronostic individuel des patientes traitées pour cancer du sein et entraînent un « surtraitement » adjuvant d’un grand nombre d’entre elles. Trois outils fondés sur l’expression génique, à moyen ou haut débit, ont été développés pour tenter de pallier cette imprécision. Leurs validations sur des séries indépendantes ont abouti à leur développement commercial. Les études sont en cours pour savoir dans quelle mesure ces signatures génomiques apportent un bénéfice cliniquement perceptible en termes de pronostic et de meilleure indication thérapeutique. Ces signatures moléculaires de première génération reposent essentiellement dans leur composition sur les voies des récepteurs aux estrogènes, du gène HER2 et de la prolifération. Il reste à démontrer qu’une utilisation de marqueurs immunohistochimiques de routine, correctement calibrés et combinés n’apporte pas une information équivalente.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Références

  1. Albain KS, Barlow WE, Shak S, et al. (2010) Prognostic and predictive value of the 21-gene Recurrence Score Assay in postmenopausal women with node-positive, oestrogen-receptor-positive breast cancer on chemotherapy: a retrospective analysis of a randomised trial. Lancet Oncol 11(1): 55–65

    Article  CAS  PubMed  Google Scholar 

  2. Buyse M, Loi S, van’t Veer L, et al. (2006) Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J Natl Cancer Inst 98: 1183–1192

    Article  CAS  PubMed  Google Scholar 

  3. Dunkler D, Michiels S, Schemper M (2007) Gene expression profiling: does it add predictive accuracy to clinical characteristics in cancer prognosis? Eur J Cancer 43: 745–751

    Article  CAS  PubMed  Google Scholar 

  4. Eden P, Ritz C, Rose C, et al. (2004) “Good Old” clinical markers have similar power in breast cancer prognosis as microarray gene expression profilers. Eur J Cancer 40: 1837–1841

    Article  CAS  PubMed  Google Scholar 

  5. Ein-Dor L, Kela I, Getz G, et al. (2005) Outcome signature genes in breast cancer: is there a unique set? Bioinformatics 21: 171–178

    Article  CAS  PubMed  Google Scholar 

  6. Ein-Dor L, Zuk O, Domany E (2006) Thousands of samples is needed to generate a robust gene list for predicting outcome in cancer. Proc Natl Acad Sci USA 103: 5923–5928

    Article  CAS  PubMed  Google Scholar 

  7. Elston CW, Ellis IO (1991) Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology 19: 403–410

    Article  CAS  PubMed  Google Scholar 

  8. Esteva FJ, Sahin AA, Cristofanilli M, et al. (2005) Prognostic role of a multigene reverse transcriptase-PCR assay in patients with node-negative breast cancer not receiving adjuvant systemic therapy. Clin Cancer Res 11: 3315–3319

    Article  CAS  PubMed  Google Scholar 

  9. Goldstein LJ, Gray R, Badve S, et al. (2008) Prognostic utility of the 21-gene assay in hormone receptor-positive operable breast cancer compared with classical clinicopathologic features. J Clin Oncol 26: 4063–4071

    Article  PubMed  Google Scholar 

  10. Habel LA, Shak S, Jacobs MK, et al. (2006) A population-based study of tumor gene expression and risk of breast cancer death among lymph node-negative patients. Breast Cancer Res 8: R25

    Article  PubMed  CAS  Google Scholar 

  11. Hornberger J, Cosler LE, Lyman GH (2005) Economic analysis of targeting chemotherapy using a 21-gene RT-PCR assay in lymph-node-negative, estrogen-receptor-positive, early-stage breast cancer. Am J Manag Care 11: 313–324

    PubMed  Google Scholar 

  12. Lander ES, Linton LM, Birren B, et al. (2001) Initial sequencing and analysis of the human genome. Nature 409: 860–921

    Article  CAS  PubMed  Google Scholar 

  13. Loi S, Haibe-Kains B, Desmedt C, et al. (2007) Definition of clinically distinct molecular subtypes in estrogen receptorpositive breast carcinomas through genomic grade. J Clin Oncol 25: 1239–1246

    Article  CAS  PubMed  Google Scholar 

  14. Lyman GH, Cosler LE, Kuderer NM, Hornberger J (2007) Impact of a 21-gene RT-PCR assay on treatment decisions in early-stage breast cancer: an economic analysis based on prognostic and predictive validation studies. Cancer 109: 1011–1018

    Article  PubMed  Google Scholar 

  15. Mamounas E, Budd GT, Miller K (2008) Incorporating the Oncotype DX breast cancer assay into community practice: an expert Q & A and case study sampling. Clin Adv Hematol Oncol 6: s1–s8

    PubMed  Google Scholar 

  16. Mook S, Schmidt MK, Viale G, et al. (2008) The 70-gene prognosis-signature predicts disease outcome in breast cancer patients with 1–3 positive lymph nodes in an independent validation study. Breast Cancer Res Treat

  17. Mook S, Schmidt MK, Weigelt B, et al. (2009) The 70-gene prognosis signature predicts early metastasis in breast cancer patients between 55 and 70 years of age. Ann Oncol [Epub ahead of print]

  18. Paik S, Shak S, Tang G, et al. (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351: 2817–2826

    Article  CAS  PubMed  Google Scholar 

  19. Paik S, Tang G, Shak S, et al. (2006) Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J Clin Oncol 24: 3726–3734

    Article  CAS  PubMed  Google Scholar 

  20. Ravdin PM (1995) A computer based program to assist in adjuvant therapy decisions for individual breast cancer patients. Bull Cancer 82(Suppl 5): 561s–564s

    PubMed  Google Scholar 

  21. Reyal F, van Vliet MH, Armstrong NJ, et al. (2008) A comprehensive analysis of prognostic signatures reveals the high predictive capacity of the proliferation, immune response and RNA splicing modules in breast cancer. Breast Cancer Res 10: R93

    Article  PubMed  CAS  Google Scholar 

  22. Schena M, Heller RA, Theriault TP, et al. (1998) Microarrays: biotechnology’s discovery platform for functional genomics. Trends Biotechnol 16: 301–306

    Article  CAS  PubMed  Google Scholar 

  23. Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270: 467–470

    Article  CAS  PubMed  Google Scholar 

  24. Sorlie T, Perou CM, Tibshirani R, et al. (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98: 10869–10874

    Article  CAS  PubMed  Google Scholar 

  25. Sotiriou C, Wirapati P, Loi S, et al. (2006) Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst 98: 262–272

    CAS  PubMed  Google Scholar 

  26. van de Vijver MJ, He YD, van’t Veer LJ, et al. (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347: 1999–2009

    Article  PubMed  Google Scholar 

  27. van’t Veer LJ, Dai H, van de Vijver MJ, et al. (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415: 530–536

    Article  Google Scholar 

  28. Venter JC, Adams MD, Myers EW, et al. (2001) The sequence of the human genome. Science 291: 1304–1351

    Article  CAS  PubMed  Google Scholar 

  29. Wirapati P, Sotiriou C, Kunkel S, et al. (2008) Meta-analysis of gene expression profiles in breast cancer: toward a unified understanding of breast cancer subtyping and prognosis signatures. Breast Cancer Res 10: R65

    Article  PubMed  CAS  Google Scholar 

  30. Wittner BS, Sgroi DC, Ryan PD, et al. (2008) Analysis of the MammaPrint breast cancer assay in a predominantly postmenopausal cohort. Clin Cancer Res 14: 2988–2993

    Article  CAS  PubMed  Google Scholar 

  31. Wolf I, Ben-Baruch N, Shapira-Frommer R, et al. (2008) Association between standard clinical and pathologic characteristics and the 21-gene recurrence score in breast cancer patients: a population-based study. Cancer 112: 731–736

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Reyal.

About this article

Cite this article

Reyal, F., Pierga, J.Y., Salmon, R.J. et al. Le point sur les signatures moléculaires dans le cancer du sein. Oncologie 12, 263–268 (2010). https://doi.org/10.1007/s10269-010-1876-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10269-010-1876-9

Keywords

Mots clés

Navigation