Skip to main content

Advertisement

Log in

Toxicity of resin-matrix cements in contact with fibroblast or mesenchymal cells

  • Review Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

The main aim of this study was to perform an integrative review on the toxic effects of resin-matrix cements and their products in contact with fibroblasts or mesenchymal cells. A bibliographic search was performed on PubMed using the following search terms: “cytotoxicity” AND “fibroblast” OR “epithelial” OR “mesenchymal” AND “polymerization” OR “degree of conversion” OR “methacrylate” OR “monomer” AND “resin cement” OR “resin-based cement”. The initial search in the available database yielded a total of 277 articles of which 21 articles were included in this review. A decrease in the viability of mouse fibroblasts ranged between 13 and 15% that was recorded for different resin-matrix cements after light curing exposure for 20 s. The viability of human fibroblasts was recorded at 83.11% after light curing for 20 s that increased up to 90.9% after light curing exposure for 40 s. Most of the studies linked the highest toxicity levels when the cells were in contact with Bis-GMA followed by UDMA, TEGDMA and HEMA. Resin-matrix cements cause a cytotoxic reaction when in contact with fibroblasts or mesenchymal cells due to the release of monomers from the polymeric matrix. The amount of monomers released from the resin matrix and their cytotoxicity depends on the polymerization parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

(Adapted from Sulaiman et al. [36])

Fig. 3

Similar content being viewed by others

References

  1. Hill EE, Lott J. A clinically focused discussion of luting materials. Aust Dent J. 2011;56:67–76.

    Article  PubMed  Google Scholar 

  2. Hill EE. Dental cements for definitive luting : a review and practical clinical considerations. Dent Clin N Am. 2007;51:643–58.

    Article  PubMed  Google Scholar 

  3. Lad PP, Kamath M, Tarale K, Kusugal PB. Practical clinical considerations of luting cements: a review. J Int Oral Health. 2014;6:116–20.

    PubMed  PubMed Central  Google Scholar 

  4. Şişmanoğlu S, Demirci M, Schweikl H, Ozen-Eroglu G, Cetin-Aktas E, Kuruca S, et al. Cytotoxic effects of different self-adhesive resin cements: cell viability and induction of apoptosis. J Adv Prosthodont. 2020;12:89–99.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Rohr N, Bertschinger N, Fischer J, Filippi A, Zitzmann NU. Influence of material and surface roughness of resin composite cements on fibroblast behavior. Oper Dent US. 2020;45:528–36.

    Article  Google Scholar 

  6. Oguz EI, Hasanreisoglu U, Uctasli S, Özcan M, Kiyan M. Effect of various polymerization protocols on the cytotoxicity of conventional and self-adhesive resin-based luting cements. Clin Oral Investig Ger. 2020;24:1161–70.

    Article  Google Scholar 

  7. Klein-Júnior CA, Zimmer R, Hentschke GS, Machado DC, Dos Santos RB, Reston EG. Effect of heat treatment on cytotoxicity of self-adhesive resin cements: cell viability analysis. Eur J Dent. 2018;12:281–6.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Nunes TG, Garcia FCP, Osorio R, Carvalho R, Toledano M. Polymerization efficacy of simplified adhesive systems studied by NMR and MRI techniques. Dent Mater. 2006;22:963–72.

    Article  PubMed  Google Scholar 

  9. dos Santos RL, Pithon MM, Martins FO, Romanos MTV, Ruellas ACO. Evaluation of cytotoxicity and degree of conversion of glass ionomer cements reinforced with resin. Eur J Orthod Engl. 2012;34:362–6.

    Article  Google Scholar 

  10. Marvin JC, Gallegos SI, Parsaei S, Rodrigues DC. In vitro evaluation of cell compatibility of dental cements used with titanium implant components. J Prosthodont. 2019;28:e705–12.

    Article  PubMed  Google Scholar 

  11. Sun F, Mao P, Wang C, Shi C, Nie R, Han N, et al. Cytotoxic effects of one-step self-etching dental adhesives on human periodontal ligament fibroblasts in vitro. J Adhes Dent Ger. 2016;18:99–109.

    Google Scholar 

  12. Sun F, Liu Y, Pan Y, Chen M, Meng X. Cytotoxicity of self-adhesive resin cements on human periodontal ligament fibroblasts. Biomed Res Int. 2018;2018:7823467.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Çörekçi B, Halıcıoğlu K, Irgın C, Hezenci Y, Yavuz MZ. Effects of plasma-emulating light emitting diode (LED) versus conventional LED on cytotoxic effects of orthodontic cements as a function of polymerization capacity. Hum Exp Toxicol Engl. 2014;33:847–54.

    Article  Google Scholar 

  14. Dickens SH, Stansbury JW, Choi KM, Floyd CJE. Photopolymerization kinetics of methacrylate dental resins. Macromolecules. 2003;36(16):6043–53.

    Article  Google Scholar 

  15. Pieralli S, Kohal RJ, Jung RE, Vach K, Spies BC. Clinical outcomes of zirconia dental implants: a systematic review. J Dent Res. 2017;96:38–46.

    Article  PubMed  Google Scholar 

  16. Balmer M, Spies BC, Vach K, Kohal RJ, Hämmerle CHF, Jung RE. Three-year analysis of zirconia implants used for single-tooth replacement and three-unit fixed dental prostheses: a prospective multicenter study. Clin Oral Implants Res. 2018;29:290–9.

    Article  PubMed  Google Scholar 

  17. Wilson TG Jr. The positive relationship between excess cement and peri-implant disease: a prospective clinical endoscopic study. J Periodontol. 2009;80:1388–92.

    Article  PubMed  Google Scholar 

  18. Geurtsen W, Spahl W, Leyhausen G. Residual monomer/additive release and variability in cytotoxicity of light-curing glass-ionomer cements and compomers. J Dent Res. 1998;77:2012–9.

    Article  PubMed  Google Scholar 

  19. Sancho-Puchades M, Crameri D, Özcan M, Sailer I, Jung RE, Hämmerle CHF, et al. The influence of the emergence profile on the amount of undetected cement excess after delivery of cement-retained implant reconstructions. Clin Oral Implant Res. 2017;28:1515–22.

    Article  Google Scholar 

  20. Ranjkesh B, Isidor F, Kraft DCE, Løvschall H. In vitro cytotoxic evaluation of novel fast-setting calcium silicate cement compositions and dental materials using colorimetric methyl-thiazolyl-tetrazolium assay. J Oral Sci Jpn. 2018;60:82–8.

    Article  Google Scholar 

  21. Ramos-Tonello CM, Lisboa-Filho PN, Arruda LB, Tokuhara CK, Oliveira RC, Furuse AY, et al. Titanium dioxide nanotubes addition to self-adhesive resin cement: effect on physical and biological properties. Dent Mater Engl. 2017;33:866–75.

    Article  Google Scholar 

  22. Mahasti S, Sattari M, Romoozi E, Akbar-Zadeh BA. Cytotoxicity comparison of harvard zinc phosphate cement versus panavia F2 and Rely X plus resin cements on rat L929-fibroblasts. Cell J. 2011;13:163–8.

    PubMed  PubMed Central  Google Scholar 

  23. Selimović-Dragaš M, Huseinbegović A, Kobašlija S, Hatibović-Kofman S. A comparison of the in vitro cytotoxicity of conventional and resin modified glass ionomer cements. Bosn J basic Med Sci. 2012;12:273–8.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Selimović-Dragaš M, Hasić-Branković L, Korać F, Đapo N, Huseinbegović A, Kobašlija S, et al. In vitro fluoride release from a different kind of conventional and resin modified glass-ionomer cements. Bosn J basic Med Sci. 2013;13:197–202.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ergun G, Egilmez F, Yilmaz S. Effect of reduced exposure times on the cytotoxicity of resin luting cements cured by high-power led. J Appl Oral Sci. 2011;19:286–92.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Botsali MS, Kuşgöz A, Altintaş SH, Ülker HE, Tanriver M, Kiliç S, et al. Residual HEMA and TEGDMA release and cytotoxicity evaluation of resin-modified glass ionomer cement and compomers cured with different light sources. Sci World J. 2014;2014:218295.

    Article  Google Scholar 

  27. Zhang C-Y, Cheng Y-L, Tong X-W, Yu H, Cheng H. In vitro cytotoxicity of self-adhesive dual-cured resin cement polymerized beneath three different cusp inclinations of Zirconia. Biomed Res Int. 2019;2019:7404038.

    PubMed  PubMed Central  Google Scholar 

  28. Celik N, Binnetoglu D, Ozakar Ilday N, Hacimuftuoglu A, Seven N. The cytotoxic and oxidative effects of restorative materials in cultured human gingival fibroblasts. Drug Chem Toxicol. 2019;44:502–7.

    Article  PubMed  Google Scholar 

  29. Gupta SK, Saxena P, Pant VA, Pant AB. Adhesion and biologic behavior of human periodontal fibroblast cells to resin ionomer Geristore: a comparative analysis. Dent Traumatol. 2013;29:389–93.

    Article  PubMed  Google Scholar 

  30. Michel A, Erber R, Frese C, Gehrig H, Saure D, Mente J. In vitro evaluation of different dental materials used for the treatment of extensive cervical root defects using human periodontal cells. Clin Oral Investig Ger. 2017;21:753–61.

    Article  Google Scholar 

  31. Trumpaite-Vanagiene R, Bukelskiene V, Aleksejuniene J, Puriene A, Baltriukiene D, Rutkunas V. Cytotoxicity of commonly used luting cements—an in vitro study. Dent Mater J Jpn. 2015;34:294–301.

    Article  Google Scholar 

  32. Ersahan S, Oktay EA, Sabuncuoglu FA, Karaoglanoglu S, Aydın N, Suloglu AK. Evaluation of the cytotoxicity of contemporary glass-ionomer cements on mouse fibroblasts and human dental pulp cells. Eur Arch Paediatr Dent. 2020;21:321–8.

    Article  PubMed  Google Scholar 

  33. Jiang RD, Lin H, Zheng G, Zhang XM, Du Q, Yang M. In vitro dentin barrier cytotoxicity testing of some dental restorative materials. J Dent Engl. 2017;58:28–33.

    Article  Google Scholar 

  34. Turp V, Ongul D, Gultekin P, Bultan O, Karataslı B, Pak TE. Polymerization efficiency of two dual-cure cements through dental ceramics. J Istanbul Univ Fac Dent. 2015;49:10–8.

    Article  Google Scholar 

  35. Sulaiman TA, Abdulmajeed AA, Donovan TE, Ritter AV, Lassila LV, Vallittu PK, et al. Degree of conversion of dual-polymerizing cements light polymerized through monolithic zirconia of different thicknesses and types. J Prosthet Dent. 2015;114:103–8.

    Article  PubMed  Google Scholar 

  36. Zimmerli B, Strub M, Jeger F, Stadler O, Lussi A. Composite materials: composition, properties and clinical applications. A literature review. Schweiz Monatsschr Zahnmed. 2010;120:972–86.

    PubMed  Google Scholar 

  37. Yildiz O, Seyrek M, Ulusoy KG. Biocompatibility of Dental Polymers Biocompatibility of Dental Polymers. 2016. 88-98. In: Polymer Science: Research Advances, Practical Applications and Educational Aspects. Formatex Publisher; Elche, Spain.

  38. Ferracane JL, Stansbury JW, Burke FJT. Self-adhesive resin cements—chemistry, properties and clinical considerations. J Oral Rehabil. 2011;38:295–314.

    Article  PubMed  Google Scholar 

  39. Tafur-Zelada CM, Carvalho O, Silva FS, Henriques B, Özcan M, Souza JCM. The influence of zirconia veneer thickness on the degree of conversion of resin-matrix cements: an integrative review. Clin Oral Investig. 2021;25:3395–408.

    Article  PubMed  Google Scholar 

  40. Fernandes V, Silva AS, Carvalho O, Henriques B, Silva FS, Özcan M, et al. The resin-matrix cement layer thickness resultant from the intracanal fitting of teeth root canal posts: an integrative review. Clin Oral Investig. 2021;25:5595–612.

    Article  PubMed  Google Scholar 

  41. Lopes-Rocha L, Ribeiro-Gonçalves L, Henriques B, Özcan M, Tiritan ME, Souza JCM. An integrative review on the toxicity of Bisphenol A (BPA) released from resin composites used in dentistry. J Biomed Mater Res B. 2021;109(11):1942–52.

    Article  Google Scholar 

  42. Ikemura K, Ichizawa K, Jogetsu Y, Endo T. Synthesis of a novel camphorquinone derivative having acylphosphine oxide group, characterization by UV-VIS spectroscopy and evaluation of photopolymerization performance. Dent Mater J. 2010;29:122–31.

    Article  PubMed  Google Scholar 

  43. Lee DS, Jeong TS, Kim S, Kim HIl, Kwon YH. Effect of dual-peak LED unit on the polymerization of coinitiator-containing composite resins. Dent Mater J. 2012;31:656–61.

    Article  PubMed  Google Scholar 

  44. Schneider LFJ, Pfeifer CSC, Consani S, Prahl SA, Ferracane JL. Influence of photoinitiator type on the rate of polymerization, degree of conversion, hardness and yellowing of dental resin composites. Dent Mater. 2008;24:1169–77.

    Article  PubMed  Google Scholar 

  45. Santini A, Gallegos IT, Felix CM. Photoinitiators in dentistry: a review. Prim Dent J. 2013;2:30–3.

    Article  PubMed  Google Scholar 

  46. Fidalgo-Pereira R, Carpio DME, Carvalho O, Catarino S, Torres O, Souza JCM. Relationship between the inorganic content and the polymerization of the organic matrix of resin composites for dentistry: a narrative review. RevSALUS. 2022. https://doi.org/10.51126/revsalus.v4i1.136

  47. Durner J, Obermaier J, Draenert M, Ilie N. Correlation of the degree of conversion with the amount of elutable substances in nano-hybrid dental composites. Dent Mater Dent Mater. 2012;28:1146–53.

    Article  PubMed  Google Scholar 

  48. Shim JS, Kang JK, Jha N, Ryu JJ. Polymerization mode of self-adhesive, dual-cured dental resin cements light cured through various restorative materials. J Esthet Restor Dent. 2017;29:209–14.

    Article  PubMed  Google Scholar 

  49. Roy P, Berger S, Schmuki P. TiO2 nanotubes: synthesis and applications. Angew Chem Int Ed Engl. 2011;50:2904–39.

    Article  PubMed  Google Scholar 

  50. Moszner N, Salz U, Zimmermann J. Chemical aspects of self-etching enamel-dentin adhesives: a systematic review. Dent Mater. 2005;21:895–910.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by FCT-Portugal [UID/EEA/04436/2013, SFRH/BPD/123769/ 2016, and Project LaserMULTICER [POCI-01-0145-FEDER-031035].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Júlio C. M. Souza.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinez-Gonzalez, M., Fidalgo-Pereira, R.C., Torres, O. et al. Toxicity of resin-matrix cements in contact with fibroblast or mesenchymal cells. Odontology 111, 310–327 (2023). https://doi.org/10.1007/s10266-022-00758-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10266-022-00758-w

Keywords

Navigation