Skip to main content

Advertisement

Log in

Orthodontic force application upregulated pain-associated prostaglandin-I2/PGI2-receptor/TRPV1 pathway-related gene expression in rat molars

  • Original Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

This study aimed to analyze the mRNA expression and protein localization of prostaglandin I2 (PGI2) synthase (PGIS), the PGI2 receptor (IP receptor) and transient receptor potential cation channel, subfamily V, member 1 (TRPV1) in force-stimulated rat molars, toward the elucidation of the PGI2-IP receptor-TRPV1 pathway that is in operation in the pulp and possibly associated with orthodontic pain and inflammation. Experimental force was applied to the maxillary first and second molars by inserting an elastic band between them for 6–72 h. PGIS, PTGIR (the IP receptor gene), and TRPV1 mRNA levels in the coronal pulp were analyzed with real-time PCR. PGIS, IP receptor, and TRPV1 proteins were immunostained. The force stimulation induced significant upregulation of PGIS at 6–24 h, and PTGIR and TRPV1 at 6 and 12 h in the pulp. PGIS was immunolocalized in odontoblasts and some fibroblasts in the force-stimulated pulp. The IP receptor and TRPV1 immunoreactivities were detected on odontoblasts and some nerve fibers. It was concluded that PGIS, PTGIR, and TRPV1 in rat molar pulp were significantly upregulated shortly after the force application, and that the IP receptor was co-expressed on TRPV1-expressing nerves and odontoblasts. These findings suggest that the PGI2-IP receptor-TRPV1 pathway is associated with the acute phase of force-induced pulp changes involving odontoblasts and nerves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mostafa YA, Iskander KG, El-Mangoury NH. Iatrogenic pulpal reactions to orthodontic extrusion. Am J Orthod Dentofac Orthop. 1991;99:30–4.

    Article  Google Scholar 

  2. Ramazanzadeh BA, Sahhafian AA, Mohtasham N, Hassanzadeh N, Jahanbin A, Shakeri MT. Histological changes in human dental pulp following application of intrusive and extrusive orthodontic force. J Oral Sci. 2009;51:109–15.

    Article  PubMed  Google Scholar 

  3. Taşpinar F, Akgül N, Simşek G, Ozdabak N, Gündoğdu C. The histopathological investigation of pulpal tissue following heavy orthopaedic forces produced by rapid maxillary expansion. J Int Med Res. 2009;31:197–201.

    Article  Google Scholar 

  4. Rana MW, Pothisiri V, Killiany DM, Xu XM. Detection of apoptosis during orthodontic tooth movement in rats. Am J Orthod Dentofac Orthop. 2001;119:516–21.

    Article  Google Scholar 

  5. Kvinsland S, Heyeraas K, Ofjord ES. Effect of experimental tooth movement on periodontal and pulpal blood flow. Eur J Orthod. 1989;11:200–5.

    Article  Google Scholar 

  6. McDonald F, Pitt Ford TR. Blood flow changes in permanent maxillary canines during retraction. Eur J Orthod. 1994;16:1–9.

    Article  PubMed  Google Scholar 

  7. Sano Y, Ikawa M, Sugawara J, Horiuchi H, Mitani H. The effect of continuous intrusive force on human pulpal blood flow. Eur J Orthod. 2002;24:159–66.

    Article  PubMed  Google Scholar 

  8. Veberiene R, Smailiene D, Baseviciene N, Toleikis A, Machiulskiene V. Change in dental pulp parameters in response to different modes of orthodontic force application. Angle Orthod. 2010;80:1018–22.

    Article  PubMed  Google Scholar 

  9. Derringer KA, Jaggers DC, Linden RW. Angiogenesis in human dental pulp following orthodontic tooth movement. J Dent Res. 1996;75:1761–6.

    Article  PubMed  Google Scholar 

  10. Derringer KA, Linden RW. Angiogenic growth factors released in human dental pulp following orthodontic force. Arch Oral Biol. 2003;48:285–91.

    Article  PubMed  Google Scholar 

  11. Grünheid T, Morbach BA, Zentner A. Pulpal cellular reactions to experimental tooth movement in rats. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2007;104:434–41.

    Article  PubMed  Google Scholar 

  12. Caviedes-Bucheli J, Moreno JO, Ardila-Pinto J, Del Toro-Carreño HR, Saltarín-Quintero H, Sierra-Tapias CL, Macias-Gomez F, Ulate E, Lombana-Sanchez N, Munoz HR. The effect of orthodontic forces on calcitonin gene-related peptide expression in human dental pulp. J Endod. 2011;37:934–7.

    Article  PubMed  Google Scholar 

  13. Chavarría-Bolaños D, Martinez-Zumaran A, Lombana N, Flores-Reyes H, Pozos-Guillen A. Expression of substance P, calcitonin gene-related peptide, β-endorphin and methionine-enkephalin in human dental pulp tissue after orthodontic intrusion: a pilot study. Angle Orthod. 2014;84:521–6.

    Article  PubMed  Google Scholar 

  14. Yamaguchi M, Kojima T, Kanekawa M, Aihara N, Nogimura A, Kasai K. Neuropeptides stimulate production of interleukin-1 beta, interleukin-6, and tumor necrosis factor-alpha in human dental pulp cells. Inflamm Res. 2004;53:199–204.

    Article  PubMed  Google Scholar 

  15. Leavitt AH, King GJ, Ramsay DS, Jackson DL. A longitudinal evaluation of pulpal pain during orthodontic tooth movement. Orthod Craniofac Res. 2002;5:29–37.

    Article  PubMed  Google Scholar 

  16. Long H, Wang Y, Jian F, Liao LN, Yang X, Lai WL. Current advances in orthodontic pain. Int J Oral Sci. 2016;8:67–75.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Pierce KL, Gil DW, Woodward DF, Regan JW. Cloning of human prostanoid receptors. Trends Pharmacol Sci. 1995;16:253–6.

    Article  PubMed  Google Scholar 

  18. Okiji T, Morita I, Kobayashi C, Sunada I, Murota S. Arachidonic-acid metabolism in normal and experimentally-inflamed rat dental pulp. Arch Oral Biol. 1987;32:723–7.

    Article  PubMed  Google Scholar 

  19. Bunting S, Moncada S, Vane JR. The prostacyclin- thromboxane A2 balance: pathophysiological and therapeutic implications. Br Med Bull. 1983;39:271–6.

    Article  PubMed  Google Scholar 

  20. Murata T, Ushikubi F, Matsuoka T, Hirata M, Yamasaki A, Sugimoto Y, Ichikawa A, Aze Y, Tanaka T, Yoshida N, Ueno A, Oh-ishi S, Narumiya S. Altered pain perception and inflammatory response in mice lacking prostacyclin receptor. Nature. 1997;388:678–82.

    Article  PubMed  Google Scholar 

  21. Moriyama T, Higashi T, Togashi K, Iida T, Segi E, Sugimoto Y, Tominaga T, Narumiya S, Tominaga M. Sensitization of TRPV1 by EP1 and IP reveals peripheral nociceptive mechanism of prostaglandins. Mol Pain. 2005;1:3.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Okiji T, Morita I, Kawashima N, Kosaka T, Suda H, Murota S. Immunohistochemical detection of prostaglandin I2 synthase in various calcified tissue-forming cells in rat. Arch Oral Biol. 1993;38:31–6.

    Article  PubMed  Google Scholar 

  23. Gurton AU, Akin E, Sagdic D, Olmez H. Effects of PGI2 and TxA2 analogs and inhibitors in orthodontic tooth movement. Angle Orthod. 2004;74:526–32.

    PubMed  Google Scholar 

  24. Waldo CM, Rothblatt JM. Histologic response to tooth movement in the laboratory rat; procedure and preliminary observations. J Dent Res. 1954;33:481–6.

    Article  PubMed  Google Scholar 

  25. Kirschneck C, Proff P, Fanghänel J, Wolf M, Roldán JC, Römer P. Reference genes for valid gene expression studies on rat dental, periodontal and alveolar bone tissue by means of RT-qPCR with a focus on orthodontic tooth movement and periodontitis. Ann Anat. 2016;204:93–105.

    Article  PubMed  Google Scholar 

  26. Smith WL. The eicosanoids and their biochemical mechanisms of action. Biochem J. 1989;259:315–24.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Santamaria M Jr, Milagres D, Iyomasa MM, Stuani MB, Ruellas AC. Initial pulp changes during orthodontic movement: histomorphological evaluation. Braz Dent J. 2007;18:34–9.

    Article  PubMed  Google Scholar 

  28. Yoshida Y, Sasaki T, Yokoya K, Hiraide T, Shibasaki Y. Cellular roles in relapse processes of experimentally-moved rat molars. J Electron Microsc (Tokyo). 1999;48:147–57.

    Article  Google Scholar 

  29. Zenter A, Heaney TG, Sergl HG. Proliferative response of cells of the dentogingival junction to mechanical stimulation. Eur J Orthod. 2000;22:639–48.

    Article  Google Scholar 

  30. Fukui T. Analysis of stress-strain curves in the rat molar periodontal ligament after application of orthodontic force. Am J Orthod Dentofac Orthop. 1993;104:27–35.

    Article  Google Scholar 

  31. Römer P, Wolf M, Fanghänel J, Reicheneder C, Proff P. Cellular response to orthodontically-induced short-term hypoxia in dental pulp cells. Cell Tissue Res. 2014;355:173–80.

    Article  PubMed  Google Scholar 

  32. Fang YC, Wu JS, Chen JJ, Cheung WM, Tseng PH, Tam KB, Shyue SK, Chen JJ, Lin TN. Induction of prostacyclin/PGI2 synthase expression after cerebral ischemia-reperfusion. J Cereb Blood Flow Metab. 2006;26:491–501.

    Article  PubMed  Google Scholar 

  33. Camacho M, Rodríguez C, Guadall A, Alcolea S, Orriols M, Escudero JR, Martínez-González J, Vila L. Hypoxia upregulates PGI-synthase and increases PGI2 release in human vascular cells exposed to inflammatory stimuli. J Lipid Res. 2011;52:720–31.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hara S, Miyata A, Yokoyama C, Inoue H, Brugger R, Lottspeich F, Ullrich V, Tanabe T. Isolation and molecular cloning of prostacyclin synthase from bovine endothelial cells. J Biol Chem. 1994;269:19897–903.

    PubMed  Google Scholar 

  35. Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, Petersen-Zeitz KR, Koltzenburg M, Basbaum AI, Julius D. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science. 2000;288:306–13.

    Article  PubMed  Google Scholar 

  36. Qiao H, Gao Y, Zhang C, Zhou H. Increased expression of TRPV1 in the trigeminal ganglion is involved in orofacial pain during experimental tooth movement in rats. Eur J Oral Sci. 2015;123:17–23.

    Article  PubMed  Google Scholar 

  37. Fehrenbacher JC, Sun XX, Locke EE, Henry MA, Hargreaves KM. Capsaicin-evoked iCGRP release from human dental pulp: a model system for the study of peripheral neuropeptide secretion in normal healthy tissue. Pain. 2009;144:253–61.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Giunta D, Keller J, Nielsen FF, Melsen B. Dentin formation in miniature pigs with special reference to indomethacin and orthodontic treatment. Scand J Dent Res. 1993;101:261–4.

    PubMed  Google Scholar 

  39. Saegusa T. The effects of aspirin DL-lysine and sodium salicylate on dentine formation in the rat incisor. Jpn J Oral Biol. 1988;30:559–71.

    Article  Google Scholar 

  40. Okumura R, Shima K, Muramatsu T, Nakagawa K, Shimono M, Suzuki T, Magloire H, Shibukawa Y. The odontoblast as a sensory receptor cell? The expression of TRPV1 (VR-1) channels. Arch Histol Cytol. 2005;68:251–7.

    Article  PubMed  Google Scholar 

  41. Son AR, Yang YM, Hong JH, Lee SI, Shibukawa Y, Shin DM. Odontoblast TRP channels and thermo/mechanical transmission. J Dent Res. 2009;88:1014–9.

    Article  PubMed  Google Scholar 

  42. El Karim IA, Linden GJ, Curtis TM, About I, McGahon MK, Irwin CR, Lundy FT. Human odontoblasts express functional thermo-sensitive TRP channels: implications for dentin sensitivity. Pain. 2011;152:2211–23.

    Article  PubMed  Google Scholar 

  43. Magloire H, Maurin JC, Couble ML, Shibukawa Y, Tsumura M, Thivichon-Prince B, Bleicher F. Topical review. Dental pain and odontoblasts: facts and hypotheses. J Orofac Pain. 2010;24:335–49.

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Takeshi Ikeuchi (Departments of Molecular Genetics and Bioinformatics, Bioresource Science Branch, Center for Bioresources, Brain Research Institute, Niigata University) for providing laboratory facilities. This study was supported in part by Grants-in Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan (23390433 and 26293405 to T.O., 25851794 to N.O., 24592863 to K.Y., and 25462952 to N.Y.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Okiji.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohkura, M., Ohkura, N., Yoshiba, N. et al. Orthodontic force application upregulated pain-associated prostaglandin-I2/PGI2-receptor/TRPV1 pathway-related gene expression in rat molars. Odontology 106, 2–10 (2018). https://doi.org/10.1007/s10266-017-0309-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10266-017-0309-2

Keywords

Navigation