Skip to main content

Advertisement

Log in

Analysis of human dentition from Early Bronze Age: 4000-year-old puzzle

  • Original Article
  • Published:
Odontology Aims and scope Submit manuscript

A Letter to the Editor to this article was published on 02 December 2016

Abstract

This paper presents the first ever paleodontological investigation of human remains from an archeological site in Central Europe dating from the Early Bronze Age and attributed to the Strzyzow Culture. It corroborates the knowledge gained from archeological, anthropological and genetical investigations. Our study aimed to assess dental status, dental morphology and dental pathologies as well as tooth wear and enamel hypoplasia based on visual inspection and stereomicroscopic investigation. The research was supported by CBCT imaging to obtain digital images and 3D reconstructions as well as 2D radiographs essential for dental age estimation. All of the 191 teeth discovered showed morphological similarity, with adult teeth showing similar color, shape and size. A maxillary molar presenting with a unique root morphology and a mandibular molar with a rare occlusal surface were found. Both permanent and deciduous dentition presented significant tooth wear. A few specimens displayed signs of dental caries, periapical pathology and antemortem tooth loss. Three individuals exhibited linear enamel hypoplasia. CBCT provided high-quality 2D images useful for dental age estimation by non-destructive methods. Estimated dental age correlated with the age estimated by other anthropological methods. In one case, this was crucial because of insufficient material for anthropological analysis. The presented studies have proved that besides the skeleton, teeth can be used as a fundamental tool in assessing the overall health and living conditions of paleopopulations. It would seem that there is potential for considerable development to be made in the research and investigation of paleodontological material using CBCT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Ritual burning of bodies have been recorded in the Strzyzow Culture.

References

  1. Olsen BD. Understanding human anatomy through evolution. 2nd ed. Bruce D. Olsen; 2009.

  2. Seiler R, Spielman AI, Zink A, Rühli F. Oral pathologies of the Neolithic Iceman, c.3,300 BC. Eur J Oral Sci. 2013;121:137–41.

    Article  PubMed  Google Scholar 

  3. Lorkiewicz W. Nonalimentary tooth use in the Neolithic population of the Lengyel Culture in Central Poland (4600–4000 BC). Am J Phys Anthropol. 2011;144:538–51.

    Article  PubMed  Google Scholar 

  4. Bernhard W. Anthropological studies on the mummy from the Ötztal Alps. Coll Anthropol. 1994;18:241–67.

    Google Scholar 

  5. Niklisch N, Ganslmeier R, Siebert A, Friedrich S, Meller H, Alt KW. Holes in teeth-dental caries in Neolithic and Early Bronze Age populations in Central Germany. Ann Anat. 2015 [in press].

  6. Lanfranco LP, Eggers S. Caries through time: an anthropological overview, contemporary approach to dental caries. In: Ming-Yu Li, editor. Contemporary approach to dental caries. InTech; 2012. pp.1–33.

  7. Temple DH. Patterns of systematic stress during the agricultural transition in prehistoric Japan. Am J Phys Anthropol. 2010;142:112–24.

    PubMed  Google Scholar 

  8. Tomczyk J, Tomczyk-Gruca M, Zalewska M. Frequency and chronological distribution of linear enamel hypoplasia (LEH) in the Late Neolithic and Early Bronze Age population from Żerniki Górne (Poland)—preliminary report. Anthropol Rev. 2012;75:61–73.

    Article  Google Scholar 

  9. Cesarani F, Martina MC, Ferraris A, Grilletto R, Boano R, Marochetti EF, Donadoni AM, Gandini G. Whole body 3D multidetector CT of 13 Egyptian human mummies. Am J Roentgenol. 2003;180:597–606.

    Article  Google Scholar 

  10. Dedouit F, Géraut A, Baranov V, Ludes B, Rougé D, Telmon N, Crubézy E. Virtual and macroscopical studies of mummies-differences or complementarity? Report of a natural frozen Siberian mummy. Forensic Sci Int. 2010;200:e7–13.

    Article  PubMed  Google Scholar 

  11. Marx M, D’Auria SH. CT examination of eleven Egyptian mummies. Radiographics. 1986;6:321–30.

    Article  PubMed  Google Scholar 

  12. Ruff CB, Holt BM, Sladek V, Berner M, Murphy AW, zyr Nedden D, Seidler H, Recheis W. Body size, body proportions and mobility in the Tyrolean “Iceman”. J Hum Evol. 2006;51:91–101.

    Article  PubMed  Google Scholar 

  13. Gahleitner A, Watzek G, Imhof H. Dental CT: imaging technique, anatomy, and pathologic conditions of the jaws. Eur Radiol. 2003;13:366–76.

    PubMed  Google Scholar 

  14. AlQahtani SJ, Hector MP, Liversidge HM. Brief communication: the London atlas of human tooth development and eruption. Am J Phys Anthropol. 2010;142:481–90.

    Article  PubMed  Google Scholar 

  15. Kvaal SI, Kolltveit KM, Thomsen IO, Solheim T. Age estimation of adults from dental radiographs. Forensic Sci Int. 1995;74:175–85.

    Article  PubMed  Google Scholar 

  16. Kullman L, Johanson G, Akesson L. Root development of the lower third molar and its relation to chronological age. Swed Dent J. 1992;16:161–7.

    PubMed  Google Scholar 

  17. Demirjian A, Goldstein H, Tanner JM. A new system of dental age assessment. Hum Biol. 1973;45:211–27.

    PubMed  Google Scholar 

  18. Moorrees CF, Fanning EA, Hunt EE. Age variation of formation stages for ten permanent teeth. J Dent Res. 1963;42:1490–502.

    Article  PubMed  Google Scholar 

  19. Woelfel JB, Scheid RC. Dental anatomy. Its relevance to dentistry. 5th ed. Williams & Wilkins, 1997.

  20. Cleghorn BM, Christie WH, Dong CCS. Root and root canal morphology of the human permanent maxillary first molar: a literature review. J Endodont. 2006;32:813–21.

    Article  Google Scholar 

  21. Shellis RP, Addy M. The interactions between attrition, abrasion and erosion in tooth wear. Monogr Oral Sci. 2014;25:32–45.

    Article  PubMed  Google Scholar 

  22. Barbour ME, Rees GD. The role of erosion, abrasion and attrition in tooth wear. J Clin Dent. 2006;17:88–93.

    PubMed  Google Scholar 

  23. Lukacs JR, Pastor RF. Activity- induced patterns of dental abrasion in prehistoric Pakistan: evidence from Mehrgarh and Harappa. Am J Phys Anthropol. 1988;76:377–98.

    Article  PubMed  Google Scholar 

  24. Kieser JA, Preston CB. The dentition of the Lengua Indians of Paraguay. Am J Phys Anthropol. 1981;55:485–90.

    Article  PubMed  Google Scholar 

  25. Kieser JA, Dennison KJ, Kaidonis JA, Huang D, Herbison PGP, Tayles NG. Patterns of tooth wear in the early Maori dentition. Int J Osteoarchaeol. 2001;11:206–17.

    Article  Google Scholar 

  26. Okeson JP. Management of temporomandibular disorders and occlusion. 7th ed. Mosby; 2013.

  27. Lukacs JR. Sex differences in dental caries rates with the origin of agriculture in South Asia. Curr Anthropol. 1996;37:147–53.

    Article  Google Scholar 

  28. Cucina A, Lucci M, Vargiu R, Coppa A. Dental evidence of biological affinity and environmental conditions in prehistoric Trentino (Italy) samples from the Neolithic to the Early Bronze Age. Int J Osteoarchaeol. 1999;9:404–16.

    Article  Google Scholar 

  29. Tayles N, Domett K, Halcrow S. Can dental caries be interpreted as evidence of farming? The Asian experience. In: Koppe T, Meyer G, Alt KW, editors. Comparative dental morphology. Front Oral Biol. Basel: Karger; 2009; 13:162–6.

  30. Goodman AH, Armelagos GJ, Rose JC. The chronological distribution of enamel hypoplasia from prehistoric Dickson Mounds populations. Am J Phys Anthropol. 1984;65:259–66.

    Article  PubMed  Google Scholar 

  31. Nanci A. Development of the tooth and its supporting tissues. In: Ten Cate’s Oral Histology. Development, Structure and Function. Chapter 1. St Louis, Missouri, Mosby Elsevier; 2008: p. 79–107.

  32. Duray SM. Dental indicators of stress and reduced age at death in prehistoric native Americans. Am J Phys Anthropol. 1996;99:275–86.

    Article  PubMed  Google Scholar 

  33. Mol A, Balasundaram A. In vitro cone beam computed tomography imaging of periodontal bone. Dentomaxillofac Radiol. 2008;37:319–24.

    Article  PubMed  Google Scholar 

  34. Haiter-Neto F, Wenzel A, Gotfredsen E. Diagnostic accuracy of cone beam computed tomography scans compared with intraoral image modalities for detection of carious lesions. Dentomaxillofac Radiol. 2008;37:18–22.

    Article  PubMed  Google Scholar 

  35. Stavropoulos A, Wenzel A. Accuracy of cone beam dental CT, intraoral digital and conventional film radiography for the detection of periapical lesions. An ex vivo study in pig jaws. Clin Oral Invest. 2007;11:101–6.

    Article  Google Scholar 

  36. Hassan B, Metska ME, Ozok AR, van der Stelt P, Wesselink PR. Comparison of five cone beam computed tomography systems for the detection of vertical root fractures. J Endod. 2010;36:126–9.

    Article  PubMed  Google Scholar 

  37. Moerenhout BA, Gelaude F, Swennen GR, Casselman JW, Van Der Sloten J, Mommaerts MY. Accuracy and repeatability of cone-beam computed tomography (CBCT) measurements used in the determination of facial indices in the laboratory setup. J Craniomaxillofac Surg. 2009;37:18–23.

    Article  PubMed  Google Scholar 

  38. Hannig C, Krieger E, Dullin C, Merten H-A, Attin T, Grabbe E, Heidrich G. Volumetry of human molars with flat panel-based volume CT in vitro. Clin Oral Invest. 2006;10:253–7.

    Article  Google Scholar 

  39. Gustafson J. Age determination on teeth. J Am Dent Assoc. 1950;41:45–54.

    Article  PubMed  Google Scholar 

  40. Johanson G. Age determination from human teeth. Odontological Rev Suppl. 1971;21:1–126.

    Google Scholar 

  41. Lamendin H, Baccino E, Humbert JF, Travernier JC, Nossintchouk RM, Zerilli A. A simple technique for age estimation in adult corpses: the two criteria dental method. J Forensic Sci. 1992;37:1373–9.

    Article  PubMed  Google Scholar 

  42. Solheim T. A new method for dental age estimation in adults. Forensic Sci Int. 1993;59:137–47.

    Article  PubMed  Google Scholar 

  43. Liversidge HM. Timing of human mandibular third molar formation. Ann Hum Biol. 2008;35:294–321.

    Article  PubMed  Google Scholar 

  44. Haavikko K. Tooth formation age estimated on a few selected teeth. A simple method for clinical use. Proc Finn Dental Soc. 1974;70:15–9.

    Google Scholar 

  45. Keller EE, Sather AH, Hayles AB. Dental and skeletal development in various endocrine and metabolic diseases. J Am Dent Assoc. 1970;81:415–9.

    Article  PubMed  Google Scholar 

  46. Psoter W, Gebrian B, Prophete S, Reid B, Katz R. Effect of early childhood malnutrition on tooth eruption in Haitian adolescents. Community Dent Oral Epidemiol. 2008;36:179–89.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mrs. Ruth Hounam for her language support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnieszka Przystańska.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

A. Przystańska and D. Lorkiewicz-Muszyńska equally contributed to the work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Przystańska, A., Lorkiewicz-Muszyńska, D., Abreu-Głowacka, M. et al. Analysis of human dentition from Early Bronze Age: 4000-year-old puzzle. Odontology 105, 13–22 (2017). https://doi.org/10.1007/s10266-015-0220-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10266-015-0220-7

Keywords

Navigation