Skip to main content

Advertisement

Log in

Performance of NiTi endodontic instrument under different temperatures

  • Original Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

The purpose of this study was to test nickel titanium (NiTi) instrument performance under different surrounding temperatures. Twenty-four superelastic NiTi instruments with a conical shape comprising a 0.30-mm-diameter tip and 0.06 taper were equally divided into 3 groups according to the temperature employed. Using a specially designed cyclic fatigue testing apparatus, each instrument was deflected to give a curvature 10 mm in radius and a 30° angle. This position was kept as the instrument was immersed in a continuous flow of water under a temperature of 10, 37, or 50 °C for 20 s to calculate the deflecting load (DL). In the same position, the instrument was then allowed to rotate at 300 rpm to fracture, and the working time was converted to the number of cycles to fracture (NCF). The statistical significance was set at p = 0.05. The mean DL (in N) and NCF (in cycles) of the groups at 10, 37, and 50 °C were 10.16 ± 1.36 and 135.50 ± 31.48, 13.50 ± 0.92 and 89.20 ± 16.44, and 14.70 ± 1.21 and 65.50 ± 15.90, respectively. The group at 10 °C had significantly the lowest DL that favorably resulted in the highest NCF. Within the limitations of this study, the surrounding temperature influences the cyclic fatigue resistance and DL of the superelastic NiTi instruments. Lower temperatures are found to favorably decrease the DL and extend the lifetime of the superelastic NiTi instrument. Further NiTi instrument failure studies should be performed under simulated body temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Courtney TH. Mechanical behavior of materials. NY: McGraw Hill; 1990. p. 562.

    Google Scholar 

  2. Parashos P, Gordon I, Messer HH. Factors influencing defects of rotary nickel-titanium endodontic instruments after clinical use. J Endod. 2004;30:722–5.

    Article  PubMed  Google Scholar 

  3. Pruett JP, Clement DJ, Carnes DL Jr. Cyclic fatigue testing of nickel-titanium endodontic instruments. J Endod. 1997;23:77–85.

    Article  PubMed  Google Scholar 

  4. Turpin YL, Chagneau F, Vulcain JM. Impact of two theoretical cross-sections on torsional and bending stresses of nickel-titanium root canal instrument models. J Endod. 2000;26:414–7.

    Article  PubMed  Google Scholar 

  5. Zinelis S, Eliades T, Eliades G. A metallurgical characterization of ten endodontic Ni-Ti instruments: assessing the clinical relevance of shape memory and superelastic properties of Ni-Ti endodontic instruments. Int Endod J. 2010;43:125–34.

    Article  PubMed  Google Scholar 

  6. Gambarini G. Cyclic fatigue of ProFile rotary instruments after prolonged clinical use. Int Endod J. 2001;34:386–9.

    Article  PubMed  Google Scholar 

  7. Kazemi RB, Stenman E, Spångberg LSW. A comparison of stainless steel and nickel-titanium H-type instruments of identical design: torsional and bending tests. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2000;90:500–6.

    Article  PubMed  Google Scholar 

  8. Alapati SB, Brantley WA, Nusstein JM, et al. Vickers hardness investigation of work-hardening in used NiTi rotary instruments. J Endod. 2006;32:1191–3.

    Article  PubMed  Google Scholar 

  9. Wagner MFX, Nayan N, Ramamurty U. Healing of fatigue damage in NiTi shape memory alloys. J Phys D. 2008;41:185408-1–4.

    Article  Google Scholar 

  10. Plotino G, Grande NM, Cordaro M, et al. A review of cyclic fatigue testing of nickel-titanium rotary instruments. J Endod. 2009;35:1469–76.

    Article  PubMed  Google Scholar 

  11. Cheung GS, Peng B, Bian Z, et al. Defects in ProTaper S1 instruments after clinical use: fractographic examination. Int Endod J. 2005;38:802–9.

    Article  PubMed  Google Scholar 

  12. Gambarini G, Grande NM, Plotino G, et al. Fatigue resistance of engine-driven rotary nickel-titanium instruments produced by new manufacturing methods. J Endod. 2008;34:1003–5.

    Article  PubMed  Google Scholar 

  13. Gao Y, Gutmann JL, Wilkinson K, et al. Evaluation of the impact of raw materials on the fatigue and mechanical properties of ProFile Vortex rotary instruments. J Endod. 2012;38:398–401.

    Article  PubMed  Google Scholar 

  14. Shen Y, Coil JM, Zhou HM, et al. ProFile Vortex instruments after clinical use: a metallurgical properties study. J Endod. 2012;38:1613–7.

    Article  PubMed  Google Scholar 

  15. Thompson SA. An overview of nickel-titanium alloys used in dentistry. Int Endod J. 2000;33:297–310.

    Article  PubMed  Google Scholar 

  16. Cheung GS, Zhang EW, Zheng YF. A numerical method for predicting the bending fatigue life of NiTi and stainless steel root canal instruments. Int Endod J. 2011;44:357–61.

    Article  PubMed  Google Scholar 

  17. Yahata Y, Yoneyama T, Hayashi Y, et al. Effect of heat treatment on transformation temperatures and bending properties of nickel-titanium endodontic instruments. Int Endod J. 2009;42:621–6.

    Article  PubMed  Google Scholar 

  18. Miyai K, Ebihara A, Hayashi Y, et al. Influence of phase transformation on the torsional and bending properties of nickel-titanium rotary endodontic instruments. Int Endod J. 2006;39:119–26.

    Article  PubMed  Google Scholar 

  19. Hayashi Y, Yoneyama T, Yahata Y, et al. Phase transformation behaviour and bending properties of hybrid nickel-titanium rotary endodontic instruments. Int Endod J. 2007;40:247–53.

    Article  PubMed  Google Scholar 

  20. Huang X, Ackland GJ, Rabe KM. Crystal structures and shape-memory behaviour of NiTi. Nat Mater. 2003;2:307–11.

    Article  PubMed  Google Scholar 

  21. Parashos P, Messer HH. Rotary NiTi instrument fracture and its consequences. J Endod. 2006;32:1031–43.

    Article  PubMed  Google Scholar 

  22. Kuhn G, Tavernier B, Jordan L. Influence of structure on nickel-titanium endodontic instruments failure. J Endod. 2001;27:516–20.

    Article  PubMed  Google Scholar 

  23. Pérez-Higueras J, Arias A, de la Macorra J, et al. Differences in cyclic fatigue resistance between ProTaper Next and ProTaper universal instruments at different levels. J Endod. 2014;40:1477–81.

    Article  PubMed  Google Scholar 

  24. Elnaghy A. Cyclic fatigue resistance of ProTaper next nickel-titanium rotary files. Int Endod J. 2014;47:1034–9.

    Article  PubMed  Google Scholar 

  25. Plotino G, Grande N, Cotti E, et al. Blue treatment enhances cyclic fatigue resistance of vortex nickel-titanium rotary files. J Endod. 2014;40:1451–3.

    Article  PubMed  Google Scholar 

  26. de Hemptinne F, Slaus G, Vandendael M, Jacquet W, De Moor RJ, Bottenberg P. In vivo intracanal temperature evolution during endodontic treatment after the injection of room temperature or preheated sodium hypochlorite. J Endod. 2015;. doi:10.1016/j.joen.2015.02.011.

    PubMed  Google Scholar 

  27. Sirtes G, Waltimo T, Schaetzle M, et al. The effects of temperature on sodium hypochlorite short-term stability, pulp dissolution capacity, and antimicrobial efficacy. J Endod. 2005;31:669–71.

    Article  PubMed  Google Scholar 

  28. Jamleh A, Sadr A, Nomura N, et al. Nano-indentation testing of new and fractured nickel-titanium endodontic instruments. Int Endod J. 2012;45:462–8.

    Article  PubMed  Google Scholar 

  29. Jamleh A, Kobayashi C, Yahata Y, et al. Deflecting load of nickel titanium rotary instruments during cyclic fatigue. Dent Mat J. 2012;31:389–93.

    Article  Google Scholar 

  30. Shen Y, Zhou H, Wang Z, et al. Phase transformation behavior and mechanical properties of thermomechanically treated K3XF nickel-titanium instruments. J Endod. 2013;39:919–23.

    Article  PubMed  Google Scholar 

  31. Miyara K, Yahata Y, Hayashi Y, et al. The influence of heat treatment on the mechanical properties of Ni-Ti file materials. Dent Mat J. 2014;33:27–31.

    Article  Google Scholar 

  32. De Azevedo Bahia MG, Fonseca Dias R, Lopes Buono VT. The influence of high amplitude cyclic straining on the behaviour of superelastic Ni-Ti. Int J Fatigue. 2006;28:1087–91.

    Article  Google Scholar 

  33. VilaverdeCorreia S, Nogueira MT, Silva RJC, et al. Phase transformations in NiTi endodontic files and fatigue resistance. ESOMAT. 2009;1:1046–51.

    Google Scholar 

  34. Young JM, Van Vliet KJ. Predicting in vivo failure of pseudoelastic NiTi devices under low cycle, high amplitude fatigue. J Biomed Mater Res B Appl Biomater. 2005;72:17–26.

    Article  PubMed  Google Scholar 

  35. Peters O, Boessler C, Zehnder M. Effect of liquid and paste-type lubricants on torque values during simulated rotary root canal instrumentation. Int Endod J. 2005;38:223–9.

    Article  PubMed  Google Scholar 

  36. Tobushi H, Yamada S, Hachisuka T, et al. Thermomechanical properties due to martensitic and R-phase transformations of TiNi shape memory alloy subjected to cyclic loadings. Smart Mater Struct. 1996;5:788–95.

    Article  Google Scholar 

  37. McKelvey AL, Ritchie RO. On the temperature dependence of the superelastic strength and the prediction of the theoretical uniaxial transformation strain in Nitinol. Philo Mag. 2000;80:1759–68.

    Article  Google Scholar 

  38. Siqueira JF Jr, Alves FR, Almeida BM, de Oliveira JC, Rôças IN. Ability of chemomechanical preparation with either rotary instruments or self-adjusting file to disinfect oval-shaped root canals. J Endod. 2010;36:1860–5.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arata Ebihara.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamleh, A., Yahata, Y., Ebihara, A. et al. Performance of NiTi endodontic instrument under different temperatures. Odontology 104, 324–328 (2016). https://doi.org/10.1007/s10266-015-0214-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10266-015-0214-5

Keywords

Navigation