Skip to main content

Advertisement

Log in

The Stephan Curve revisited

  • Review Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

The Stephan Curve has played a dominant role in caries research over the past several decades. What is so remarkable about the Stephan Curve is the plethora of interactions it illustrates and yet acid production remains the dominant focus. Using sophisticated technology, it is possible to measure pH changes in plaque; however, these observations may carry a false sense of accuracy. Recent observations have shown that there may be multiple pH values within the plaque matrix, thus emphasizing the importance of the milieu within which acid is formed. Although acid production is indeed the immediate proximate cause of tooth dissolution, the influence of alkali production within plaque has received relative scant attention. Excessive reliance on Stephan Curve leads to describing foods as “safe” if they do not lower the pH below the so-called “critical pH” at which point it is postulated enamel dissolves. Acid production is just one of many biological processes that occur within plaque when exposed to sugar. Exploration of methods to enhance alkali production could produce rich research dividends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Miller WD. The agency of acids in the production of caries in human teeth, with comparative analysis of carious dentine and dentine softened by acids. Dent Cosmos. 1883;47:337–44.

    Google Scholar 

  2. Stephan RM. Changes in hydrogen-ion concentrations on tooth surfaces and in carious lesions. J Am Dent Assoc. 1940;27:718–23.

    Google Scholar 

  3. Stephan RM. Intro-oral hydrogen-ion concentrations associated with dental caries activity. J Dent Res. 1944;23:257–66.

    Article  Google Scholar 

  4. Preston AJ, Edgar WM. Developments in dental plaque pH modelling. J Dent. 2005;33:209–22.

    Article  PubMed  Google Scholar 

  5. Igarashi K, Kamiyama K, Yamada T. Measurement of pH in human dental plaque in vivo with an ion-sensitive transistor electrode. Arch Oral Biol. 1981;26:203–7.

    Article  PubMed  Google Scholar 

  6. Kleinberg I, Jenkins GN, Chatterjee R, Wijeyeweera L. The antimony pH electrode and its role in the assessment and interpretation of dental plaque pH. J Dent Res. 1982;61:1139–47.

    Article  PubMed  Google Scholar 

  7. Bowen WH. The monitoring of acid production in dental plaque in monkeys. Br Dent J. 1969;126:506–8.

    PubMed  Google Scholar 

  8. Charlton G, Fitzgerald RJ, Keyes PH. Determination of saliva and dental plaque pH in hamsters with glass micro-electrodes. Arch Oral Biol. 1971;16:649–54.

    Article  PubMed  Google Scholar 

  9. Schachtele CF, Jensen ME. Comparison of methods for monitoring changes in the pH of human dental plaque. J Dent Res. 1982;61:1117–25.

    Article  PubMed  Google Scholar 

  10. Newman P, MacFadyen EE, Gillespie FC, Stephen KW. An in-dwelling electrode for in vivo measurement of the pH of dental plaque in man. Arch Oral Biol. 1979;24:501–7.

    Article  PubMed  Google Scholar 

  11. Firestone AR, Imfeld T, Schiffer S, Lutz F. Measurement of interdental plaque pH in humans with an indwelling glass pH electrode following a sucrose rinse: a long-term retrospective study. Caries Res. 1987;21:555–8.

    Article  PubMed  Google Scholar 

  12. Shields WF, Muhlemann HR. Simultaneous pH and fluoride telemetry from the oral cavity. Helv Odontol Acta. 1975;19:18–26.

    PubMed  Google Scholar 

  13. Imfeld T, Muhlemann HR. Cariogenicity and acidogenicity of food, confectionery and beverages. Pharmacol Ther Dent. 1978;3:53–68.

    PubMed  Google Scholar 

  14. Edgar WM. Duration of response and stimulus sequence in the interpretation of plaque pH data. J Dent Res. 1982;61:1126–9.

    Article  PubMed  Google Scholar 

  15. Graf H. [Telemetry of the pH of the interdental plaque]. Schweizerische Monatsschrift fur Zahnheilkunde =. Revue mensuelle suisse d’odonto-stomatologie/SSO. 1969;79:146–78.

    Google Scholar 

  16. Hassell TM. pH Telemetry of the interdental plaque after partaking sugar and sugar exchange substances. Dtsch Zahnarztl Z. 1971;26:1145–54.

    PubMed  Google Scholar 

  17. Imfeld T, Hirsch RS, Muhlemann HR. Telemetric recordings of interdental plaque pH during different meal patterns. Br Dent J. 1978;144:40–5.

    Article  PubMed  Google Scholar 

  18. Xiao J, Klein MI, Falsetta ML, Lu B, Delahunty CM, Yates JR 3rd, Heydorn A, Koo H. The exopolysaccharide matrix modulates the interaction between 3D architecture and virulence of a mixed-species oral biofilm. PLoS Pathog. 2012;8:e1002623.

    Article  PubMed  Google Scholar 

  19. Dong YM, Pearce EI, Yue L, Larsen MJ, Gao XJ, Wang JD. Plaque pH and associated parameters in relation to caries. Caries Res. 1999;33:428–36.

    Article  PubMed  Google Scholar 

  20. Fejerskov O, Scheie AA, Manji F. The effect of sucrose on plaque pH in the primary and permanent dentition of caries-inactive and -active Kenyan children. J Dent Res. 1992;71:25–31.

    Article  PubMed  Google Scholar 

  21. Newbrun E. Extracellular polysaccharides of oral streptococci. Caries Res. 1972;6:74–5.

    Article  PubMed  Google Scholar 

  22. Emilson CG, Nilsson B, Bowen WH. Carbohydrate composition of dental plaque from primates with irradiation caries. J Oral Path. 1984;13:213–20.

    Article  PubMed  Google Scholar 

  23. Ashley FP, Wilson RF. The relationship between dietary sugar experience and the quantity and biochemical composition of dental plaque in man. Arch Oral Biol. 1977;22:409–14.

    Article  PubMed  Google Scholar 

  24. Cury JA, Rebelo MA, Del Bel Cury AA, Derbyshire MT, Tabchoury CP. Biochemical composition and cariogenicity of dental plaque formed in the presence of sucrose or glucose and fructose. Caries Res. 2000;34:491–7.

    Article  PubMed  Google Scholar 

  25. Walker GJ, Pulkownik A, Morrey-Jones JG. Metabolism of the polysaccharides of human dental plaque: release of dextranase in batch cultures of Streptococcus mutans. J Gen Microbiol. 1981;127:201–8.

    PubMed  Google Scholar 

  26. Minah GE, Loesche WJ. Sucrose metabolism by prominent members of the flora isolated from cariogenic and non-cariogenic dental plaques. Infect Immun. 1977;17:55–61.

    PubMed  Google Scholar 

  27. Tanzer JM, Freedman ML. Genetic alterations of Streptococcus mutans’ virulence. Adv Exp Med Biol. 1978;107:661–72.

    Article  PubMed  Google Scholar 

  28. Gibbons RJ, Socransky SS. Intracellular polysaccharide storage by organisms in dental plaques. Its relation to dental caries and microbial ecology of the oral cavity. Arch Oral Biol. 1962;7:73–9.

    Article  PubMed  Google Scholar 

  29. Spatafora G, Rohrer K, Barnard D, Michalek S. A Streptococcus mutans mutant that synthesizes elevated levels of intracellular polysaccharide is hypercariogenic in vivo. Infect Immun. 1995;63:2556–63.

    PubMed  Google Scholar 

  30. Kleinberg I, Jenkins GN. The pH of dental plaques in the different areas of the mouth before and after meals and their relationship to the pH and rate of flow of resting saliva. Arch Oral Biol. 1964;9:493–516.

    Article  PubMed  Google Scholar 

  31. Higham SM, Edgar WM. Human dental plaque pH, and the organic acid and free amino acid profiles in plaque fluid, after sucrose rinsing. Arch Oral Biol. 1989;34:329–34.

    Article  PubMed  Google Scholar 

  32. Geddes DA. The production of l(+) and d(−) lactic acid and volatile acids by human dental plaque and the effect of plaque buffering and acidic strength on pH. Arch Oral Biol. 1972;17:537–45.

    Article  PubMed  Google Scholar 

  33. Geddes DA. Acids produced by human dental plaque metabolism in situ. Caries Res. 1975;9:98–109.

    Article  PubMed  Google Scholar 

  34. Dawes C. What is the critical pH and why does a tooth dissolve in acid? J Can Dent Assoc. 2003;69:722–4.

    PubMed  Google Scholar 

  35. Shellis RP, Dibdin GH. Analysis of the buffering systems in dental plaque. J Dent Res. 1988;67:438–46.

    Article  PubMed  Google Scholar 

  36. Imfeld T, Duhamel L. Evaluation of non-cariogenic food with intra-oral telemetry of the pH of interdental plaque. Revue d’odonto-stomatologie. 1980;9:27–38.

    PubMed  Google Scholar 

  37. Edgar WM. Prediction of the cariogenicity of various foods. Int Dent J. 1985;35:190–4.

    PubMed  Google Scholar 

  38. Pearce EI. Relationship between demineralization events in dental enamel and the pH and mineral content of plaque. Proc Finn Dent Soc Suomen Hammaslaakariseuran toimituksia. 1991;87:527–39.

    Google Scholar 

  39. Sheng J, Marquis RE. Enhanced acid resistance of oral streptococci at lethal pH values associated with acid-tolerant catabolism and with ATP synthase activity. FEMS Microbiol Lett. 2006;262:93–8.

    Article  PubMed  Google Scholar 

  40. Lemos JA, Abranches J, Burne RA. Responses of cariogenic streptococci to environmental stresses. Curr Issues Mol Biol. 2005;7:95–107.

    PubMed  Google Scholar 

  41. Kajfasz JK, Rivera-Ramos I, Abranches J, Martinez AR, Rosalen PL, Derr AM, Quivey RG, Lemos JA. Two Spx proteins modulate stress tolerance, survival, and virulence in Streptococcus mutans. J Bacteriol. 2010;192:2546–56.

    Article  PubMed  Google Scholar 

  42. Narhi TO, Meurman JH, Ainamo A. Xerostomia and hyposalivation: causes, consequences and treatment in the elderly. Drugs Aging. 1999;15:103–16.

    Article  PubMed  Google Scholar 

  43. Dawes C. An analysis of factors influencing diffusion from dental plaque into a moving film of saliva and the implications for caries. J Dent Res. 1989;68:1483–8.

    Article  PubMed  Google Scholar 

  44. Kleinberg I. Effect of urea concentration on human plaque pH levels in situ. Arch Oral Biol. 1967;12:1475–84.

    Article  PubMed  Google Scholar 

  45. Singer DL, Kleinberg I. Quantitative assessment of urea, glucose and ammonia changes in human dental plaque and saliva following rinsing with urea and glucose. Arch Oral Biol. 1983;28:923–9.

    Article  PubMed  Google Scholar 

  46. Abelson DC, Vratsanos SM, Mandel ID. Modification of dental plaque by arginine-urea to resist pH fall in vivo. Clin Prev Dent. 1986;8:7–10.

    PubMed  Google Scholar 

  47. Meyerowitz D. Caries in renal dialysis patients. In: Bowen WH, Tabak LA, editors. Cariology for the Nineties. Rochester: University of Rochester Press; 1993. p. 249–60.

  48. Gordan VV, Garvan CW, Ottenga ME, Schulte R, Harris PA, McEdward D, Magnusson I. Could alkali production be considered an approach for caries control? Caries Res. 2010;44:547–54.

    Article  PubMed  Google Scholar 

  49. Marquis RE, Burne RA, Parsons DT, Casiano-Colon AE. Arginine Deiminase and Alkali Generation in Plaque. In: Bowen WH, Tabak LA, editors. Cariology for the Nineties. Rochester: University of Rochester Press; 1993. p. 309–17.

  50. Curran TM, Lieou J, Marquis RE. Arginine deiminase system and acid adaptation of oral streptococci. Appl Environ Microbiol. 1995;61:4494–6.

    PubMed  Google Scholar 

  51. Burne RA, Marquis RE. Alkali production by oral bacteria and protection against dental caries. FEMS Microbiol Lett. 2000;193:1–6.

    Article  PubMed  Google Scholar 

  52. Griswold AR, Nascimento MM, Burne RA. Distribution, regulation and role of the agmatine deiminase system in mutans streptococci. Oral Microbiol Immunol. 2009;24:79–82.

    Article  PubMed  Google Scholar 

  53. Sheng J, Baldeck JD, Nguyen PT, Quivey RG Jr, Marquis RE. Alkali production associated with malolactic fermentation by oral streptococci and protection against acid, oxidative, or starvation damage. Can J Microbiol. 2010;56:539–47.

    Article  PubMed  Google Scholar 

  54. Curtis MA, Kemp CW, Robrish SA, Bowen WH. Stickland reactions of dental plaque. Infect Immun. 1983;42:431–3.

    PubMed  Google Scholar 

  55. Nisman B. The Stickland reaction. Bacteriol Rev. 1954;18:16–42.

    PubMed  Google Scholar 

  56. Ng SK, Hamilton IR. Lactate metabolism by Veillonella parvula. J Bacteriol. 1971;105:999–1005.

    PubMed  Google Scholar 

  57. Hu G, Sandham HJ. Streptococcal utilization of lactic acid and its effect on pH. Arch Oral Biol. 1972;17:729–43.

    Article  PubMed  Google Scholar 

  58. Ayad M, Van Wuyckhuyse BC, Minaguchi K, Raubertas RF, Bedi GS, Billings RJ, Bowen WH, Tabak LA. The association of basic proline-rich peptides from human parotid gland secretions with caries experience. J Dent Res. 2000;79:976–82.

    Article  PubMed  Google Scholar 

  59. Rogers AH. Utilization of nitrogenous compounds by oral bacteria. Aust Dent J. 1990;35:468–71.

    Article  PubMed  Google Scholar 

  60. Rankine CA, Prihoda TJ, Etzel KR, Labadie D. Plaque fluid pH, calcium and phosphorus responses to calcium food additives in a chewable candy. Arch Oral Biol. 1989;34:821–4.

    Article  PubMed  Google Scholar 

  61. Bowen WH, Koo H. Biology of Streptococcus mutans-derived glucosyltransferases: role in extracellular matrix formation of cariogenic biofilms. Caries Res. 2011;45:69–86.

    Article  PubMed  Google Scholar 

  62. Li Y, Burne RA. Regulation of the gtfBC and ftf genes of Streptococcus mutans in biofilms in response to pH and carbohydrate. Microbiology. 2001;147:2841–8.

    PubMed  Google Scholar 

  63. Kleinberg I. A mixed-bacteria ecological approach to understanding the role of the oral bacteria in dental caries causation: an alternative to Streptococcus mutans and the specific-plaque hypothesis. Crit Rev Oral Biol Med: an official publication of the American Association of Oral Biologists. 2002;13:108–25.

    Article  Google Scholar 

  64. Liu YL, Nascimento M, Burne RA. Progress toward understanding the contribution of alkali generation in dental biofilms to inhibition of dental caries. Int J Oral Sci. 2012;4:135–40.

    Article  PubMed  Google Scholar 

  65. Wijeyeweera RL, Kleinberg I. Arginolytic and ureolytic activities of pure cultures of human oral bacteria and their effects on the pH response of salivary sediment and dental plaque in vitro. Arch Oral Biol. 1989;34:43–53.

    Article  PubMed  Google Scholar 

  66. Morou-Bermudez E, Elias-Boneta A, Billings RJ, Burne RA, Garcia-Rivas V, Brignoni-Nazario V, Suarez-Perez E. Urease activity in dental plaque and saliva of children during a three-year study period and its relationship with other caries risk factors. Arch Oral Biol. 2011;56:1282–9.

    Article  PubMed  Google Scholar 

  67. Clancy KA, Pearson S, Bowen WH, Burne RA. Characterization of recombinant, ureolytic Streptococcus mutans demonstrates an inverse relationship between dental plaque ureolytic capacity and cariogenicity. Infect Immun. 2000;68:2621–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William H. Bowen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bowen, W.H. The Stephan Curve revisited. Odontology 101, 2–8 (2013). https://doi.org/10.1007/s10266-012-0092-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10266-012-0092-z

Keywords

Navigation