Skip to main content

Advertisement

Log in

Effects of Porphyromonas gingivalis surface-associated material on osteoclast formation

  • Original Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

Porphyromonas gingivalis strongly correlates with periodontitis, but the underlying mechanisms causing dentoalveolar bone resorption are not fully understood. As contradictory effects of P. gingivalis on osteoclastogenesis have been reported, this study investigates the effect of P. gingivalis extract on osteoclast formation. Osteoclast formation in mouse bone marrow (MBM) cell cultures and RAW 264.7 cells was stimulated by nuclear factor-κB ligand (RANKL) or parathyroid hormone (PTH). Cells were cultured with and without P. gingivalis surface-associated material and phenotypic characteristics were examined using microscopy, flow cytometry, and RT-PCR. P. gingivalis significantly decreased osteoclast formation and the expression of osteoclast phenotypic markers in PTH-stimulated MBM cultures. Additionally, P. gingivalis inhibited expression of osteoclast differentiation factors and stimulated expression of the mouse macrophage marker F4/80. The presence of P. gingivalis in RANKL-stimulated MBM cultures and RAW 264.7 cells inhibited osteoclastogenesis. Interestingly, a transient exposure with P. gingivalis before PTH stimulation increased osteoclastogenesis in MBM cultures. Flow cytometric analyses of cells transiently exposed to P. gingivalis demonstrated an increased proportion of potential osteoclast precursor cells. We conclude that a transient exposure of MBM cultures to P. gingivalis increases the number of osteoclast precursors and osteoclast formation, whereas a prolonged exposure completely abolishes osteoclastogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Taylor JJ. Cytokine regulation of immune responses to Porphyromonas gingivalis. Periodontology 2000. 2010;54:160–94.

    Article  PubMed  Google Scholar 

  2. Pihlstrom BC, Michalowicz BS, Johnson DW. Periodontal diseases. Lancet. 2005;366:1809–20.

    Article  PubMed  Google Scholar 

  3. Darveau RP. Periodontitis: a polymicrobial disruption of host homeostasis. Nat Rev Microbiol. 2010;8:481–90.

    Article  PubMed  Google Scholar 

  4. Cochran DL. Inflammation and bone loss in periodontal disease. J Periodontol. 2008;79(Suppl):1569–76.

    Article  PubMed  Google Scholar 

  5. Teitelbaum SL. Bone resorption by osteoclasts. Science. 2000;289:1504–8.

    Article  PubMed  Google Scholar 

  6. Boyce BF, Schwarz EM, Xing L. Osteoclast precursors: cytokine-stimulated immunomodulators of inflammatory bone disease. Curr Opin Rheumatol. 2006;18:427–32.

    Article  PubMed  Google Scholar 

  7. Trouvin AP, Goëb V. Receptor activator of nuclear factor-κB ligand and osteoprotegerin: maintaining the balance to prevent bone loss. Clin Interv Aging. 2010;5:345–54.

    PubMed  Google Scholar 

  8. Takayanagi H. New immune connections in osteoclast formation. Ann N Y Acad Sci. 2010;1192:117–23.

    Article  PubMed  Google Scholar 

  9. Ukai T, Yumoto H, Gibson FC 3rd, Genco CA. Macrophage-elicited osteoclastogenesis in response to bacterial stimulation requires Toll-like receptor 2-dependent tumor necrosis factor-alpha production. Infect Immun. 2008;76:812–9.

    Article  PubMed  Google Scholar 

  10. Kelk P, Claesson R, Hänström L, Lerner UH, Kalfas S, Johansson A. Abundant secretion of bioactive IL-1β by human macrophages induced by Actinobacillus actinomycetemcomitans leukotoxin. Infect Immun. 2005;73:453–8.

    Article  PubMed  Google Scholar 

  11. Koide M, Kinugawa S, Takahashi N, Udagawa N. Osteoclastic bone resorption induced by innate immune responses. Periodontol. 2000;2010(54):235–46.

    Google Scholar 

  12. Kelk P, Claesson R, Chen C, Sjöstedt A, Johansson A. IL-1ß secretion induced by Aggregatibacter (Actinobacillus) actinomycetemcomitans is mainly caused by the leukotoxin. Int J Med Microbiol. 2008;298:529–41.

    Article  PubMed  Google Scholar 

  13. Kawai T, Matsuyama T, Hosokawa Y, Makihira S, Seki M, Karimbux NY, Goncalves RB, Valverde P, Dibart S, Li YP, Miranda LA, Ernst CW, Izumi Y, Taubman MA. B and T lymphocytes are the primary sources of RANKL in the bone resorptive lesion of periodontal disease. Am J Pathol. 2006;169:987–98.

    Article  PubMed  Google Scholar 

  14. Lamont RJ, Jenkinson HF. Subgingival colonization by Porphyromonas gingivalis. Oral Microbiol Immunol. 2000;15:341–9.

    Article  PubMed  Google Scholar 

  15. Imamura T. The role of gingipains in the pathogenesis of periodontal disease. J Periodontol. 2003;74:111–8.

    Article  PubMed  Google Scholar 

  16. Johansson A, Kalfas S. Characterization of protease-dependent cytotoxicity of Porphyromonas gingivalis. Eur J Oral Sci. 1998;106:863–71.

    Article  PubMed  Google Scholar 

  17. Meka A, Bakthavatchalu V, Sathishkumar S, Lopez MC, Verma RK, Wallet SM, Bhattacharyya I, Boyce BF, Handfield M, Lamont RJ, Baker HV, Ebersole JL, Kesavalu L. Porphyromonas gingivalis infection-induced tissue and bone transcriptional profiles. Mol Oral Microbiol. 2010;25:61–74.

    Article  PubMed  Google Scholar 

  18. Fujimura Y, Hotokezaka H, Ohara N, Naito M, Sakai E, Yoshimura M, Narita Y, Kitaura H, Yoshida N, Nakayama K. The hemoglobin receptor protein of Porphyromonas gingivalis inhibits receptor activator NF-kappaB ligand-induced osteoclastogenesis from bone marrow macrophages. Infect Immun. 2006;74:2544–51.

    Article  PubMed  Google Scholar 

  19. Scheres N, de Vries TJ, Brunner J, Laine ML, Everts V. Diverse effects of Porphyromonas gingivalis on human osteoclast formation. Microb Pathog. 2011;51:149–55.

    Article  PubMed  Google Scholar 

  20. Belibasakis GN, Bostanci N, Hashim A, Johansson A, Aduse-Opoku J, Curtis MA, Hughes FJ. Regulation of RANKL and OPG gene expression in human gingival fibroblasts and periodontal ligament cells by Porphyromonas gingivalis: a putative role of the Arg-gingipains. Microb Pathog. 2007;43:46–53.

    Article  PubMed  Google Scholar 

  21. Reddi D, Bostanci N, Hashim A, Aduse-Opoku J, Curtis MA, Hughes FJ, Belibasakis GN. Porphyromonas gingivalis regulates the RANKL-OPG system in bone marrow stromal cells. Microbes Infect. 2008;10:1459–68.

    Article  PubMed  Google Scholar 

  22. Liu J, Wang S, Zhang P, Said-Al-Naief N, Michalek SM, Feng X. Molecular mechanism of the bifunctional role of lipopolysaccharide in osteoclastogenesis. J Biol Chem. 2009;284:12512–23.

    Article  PubMed  Google Scholar 

  23. Lombardo E, Alvarez-Barrientos A, Maroto B, Boscá L, Knaus UG. TLR4-mediated survival of macrophages is MyD88 dependent and requires TNF-alpha autocrine signalling. J Immunol. 2007;178:3731–9.

    PubMed  Google Scholar 

  24. Hajishengallis G, Wang M, Liang S, Shakhatreh MA, James D, Nishiyama S, Yoshimura F, Demuth DR. Subversion of innate immunity by periodontopathic bacteria via exploitation of complement receptor-3. Adv Exp Med Biol. 2008;632:203–19.

    PubMed  Google Scholar 

  25. Ransjö M, Lie A, Mackie EJ. Cholera toxin and forskolin stimulate formation of osteoclast-like cells in mouse marrow cultures and cultured mouse calvarial bones. Eur J Oral Sci. 1999;107:45–54.

    Article  PubMed  Google Scholar 

  26. Paster BJ, Olsen I, Aas JA, Dewhirst FE. The breadth of bacterial diversity in the human periodontal pocket and other oral sites. Periodontol. 2000;2006:80–7.

    Google Scholar 

  27. Fitzpatrick RE, Campbell PD, Sivagurunathan S, Pagel CN, Potempa J, Mackie EJ, Pike RN. The gingipains from Porphyromonas gingivalis do not directly induce osteoclast differentiation in primary mouse bone marrow cultures. J Periodontal Res. 2009;44:565–7.

    Article  PubMed  Google Scholar 

  28. Flad HD, Grage-Griebenow E, Petersen F, Scheuerer B, Brandt E, Baran J, Pryjma J, Ernst M. The role of cytokines in monocyte apoptosis. Pathobiology. 1999;67:291–3.

    Article  PubMed  Google Scholar 

  29. Väänänen HK, Laitala-Leinonen T. Osteoclast lineage and function. Arch Biochem Biophys. 2008;473:132–8.

    Article  PubMed  Google Scholar 

  30. Muto A, Mizoguchi T, Udagawa N, Ito S, Kawahara I, Abiko Y, Arai A, Harada S, Kobayashi Y, Nakamichi Y, Penninger JM, Noguchi T, Takahashi N. Lineage-committed osteoclast precursors circulate in blood and settle down into bone. J Bone Miner Res. 2011;12:2978–90.

    Article  Google Scholar 

  31. Behl Y, Siqueira M, Ortiz J, Li J, Desta T, Faibish D, Graves DT. Activation of the acquired immune response reduces coupled bone formation in response to a periodontal pathogen. J Immunol. 2008;181:8711–8.

    PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Swedish Dental Association and Research Fund (TUA) of Västerbotten County, Sweden.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Johansson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 46 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bougas, K., Ransjö, M. & Johansson, A. Effects of Porphyromonas gingivalis surface-associated material on osteoclast formation. Odontology 101, 140–149 (2013). https://doi.org/10.1007/s10266-012-0068-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10266-012-0068-z

Keywords

Navigation