Skip to main content

Advertisement

Log in

Three-dimensional observation of the mouse embryo by micro-computed tomography: composition of the trigeminal ganglion

  • Original Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

The purpose of this study was to demonstrate a micro-computed tomography (CT) method for observations of the mouse embryo. At 13.0 days post-coitum, mouse embryos were fixed in 4% paraformaldehyde for 24 h and stained en bloc by osmium tetroxide overnight. The embryos were then embedded in paraffin using standard methods for 24 h. Specimens were analyzed by micro-CT and image processing was performed. Organs containing nervous and blood systems could be viewed as a result of different osmium-staining densities. The trigeminal ganglion was imaged using three-dimensional techniques. Observation of the embryo was possible by micro-CT with osmium tetroxide staining.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Handa S, Tomiha S, Kose K, Haishi T. In vivo assessment of the trabecular bone microstructure of the distal radius using a compact MRI system. Magn Reson Med Sci 2009;8:39–42.

    Article  PubMed  Google Scholar 

  2. Matsuda Y, Ono S, Otake Y, Handa S, Kose K, Haishi T, Yamada S, Uwabe C. Imaging of a large collection of human embryo using a super-parallel MR microscope. Magn Reson Med Sci 2007;6:139–146.

    Article  PubMed  Google Scholar 

  3. Baltali E, Zhao KD, Koff MF, Keller EE, An KN. Accuracy and precision of a method to study kinematics of the temporomandibular joint: combination of motion data and CT imaging. J Biomech 2008;41:2581–2584.

    Article  PubMed  Google Scholar 

  4. Dhenain M, Ruffins SW, Jacobs RE. Three-dimensional digital mouse atlas using high-resolution MRI. Dev Biol 2001;232:458–470.

    Article  PubMed  Google Scholar 

  5. Feldkamp LA, Goldstein SA, Parfitt M, Jesion G, Kleereoper M. The direct examination of three-dimensional bone architecture in vitro by computed tomography. J Bone Miner Res 1989;l4:3–11.

    Article  Google Scholar 

  6. Iwaka Y. Three-dimensional observation of the pulp cavity of mandibular first molars by micro-CT. J Oral Biosci 2006;48:94–102.

    Article  Google Scholar 

  7. Peters OA, Peters CI, Scho K, Barbakow K. ProTaper rotary root canal preparation: effects of canal anatomy on final shape analysed by micro CT. Int Endod J 2003;36:86–92.

    Article  PubMed  Google Scholar 

  8. Amanai T, Nakamura Y, Aoki S, Mataga I. Micro-CT analysis of experimental candida osteoarthritis in rats. Mycopathologia 2008;166:133–141.

    Article  PubMed  Google Scholar 

  9. Parkinson CR, Sasov A. High-resolution non-destructive 3D interrogation of dentin using X-ray nanotomography. Dent Mater 2008;24:773–777.

    Article  PubMed  Google Scholar 

  10. Cooper D, Turinsky A, Sensen C, Hallgrimsson B. Effect of voxel size on 3D micro-CT analysis of cortical bone porosity. Calcif Tissue Int 2007;80:211–219.

    Article  PubMed  Google Scholar 

  11. Buijs JOD, Bajzer Z, Ritman E. Branching morphology of the rat hepatic portal vein tree: a Micro-CT Study. Ann Biomed Eng 2006;34:1420–1428.

    Article  Google Scholar 

  12. Ananda S, Marsden V, Vekemans K, Korkmaz E, Tsafnat N, Soon L, Jones A, Braet F. The visualization of hepatic vasculature by X-ray micro-computed tomography. J Electron Microsc 2006;55:151–155.

    Article  Google Scholar 

  13. Butcher JT, Sedmera D, Guldberg RE, Markwald RR. Quantitative volumetric analysis of cardiac morphogenesis assessed through micro-computed tomography. Dev Dyn 2007;236:802–809.

    Article  PubMed  Google Scholar 

  14. Sharpe J, Ahlgren U, Perry P, Hill B, Ross A, Hecksher-Sorensen J, Baldock R, Davidson D. Optical projection tomography as a tool for 3D microscopy and gene expression studies. Science 2002;296:541–545.

    Article  PubMed  Google Scholar 

  15. Fisher ME, Clelland AK, Bain A, Baldock RA, Murphy P, Downie P, Tickle C, Davidson DR, Buckland RA. Integrating technologies for comparing 3D gene expression domains in the developing chick limb. Dev Biol 2008;317:13–23.

    Article  PubMed  Google Scholar 

  16. DeLaurier A, Schweitzer R, Logan M. Pitx1 determines the morphology of muscle, tendon, and bones of the hindlimb. Dev Biol 2006;299:22–34.

    Article  PubMed  Google Scholar 

  17. Elgazzar RF, Abdulmajeed I, Mutabbakani M. Cyanoacrylate glue versus suture in peripheral nerve reanastomosis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2007;104:465–472.

    Article  PubMed  Google Scholar 

  18. Kaufman MH, Brune RM, Davidson DR, Baldock RA. Computergenerated three-dimensional reconstructions of serially sectioned mouse embryos. J Anat 1998;193:323–336.

    Article  PubMed  Google Scholar 

  19. Weniger WJ, Geyer SH, Mohun TJ, Rasskin-Gutman D, Matsui T, Ribeiro I, Costa LdaF, Izpisúa-Belmonte JC, Müller GB. Highresolution episcopic microscopy: a rapid technique for high detailed 3D analysis of gene activity in the context of tissue architecture and morphology. Anat Embryol 2006;211:213–221.

    Article  Google Scholar 

  20. Huisken J, Swoger J, Del Bene F, Wittbrodt J, Stelzer EH. Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 2004;305:1007–1009.

    Article  PubMed  Google Scholar 

  21. Aoyagi H, Asami T, Yoshizawa H, Wanichanon C, Iwasaki S. Newly developed technique for dual localization of keratins 13 and 14 by fluorescence immunohistochemistry. Acta Histochem 2008;110:324–332.

    Article  PubMed  Google Scholar 

  22. Boot MJ, Westerberg CH, Sanz-Ezquerro J, Cotterell J, Schweitzer R, Torres M, Sharpe J. In vitro whole-organ imaging: 4D quantification of growing mouse limb buds. Nat Methods 2008;5:609–612.

    Article  PubMed  Google Scholar 

  23. Alanentalo T, Lorén CE, Larefalk A, Sharpe J, Holmberg D, Ahlgren U. High-resolution three-dimensional imaging of isletinfiltrate interactions based on optical projection tomography assessments of the intact adult mouse pancreas. J Biomed Opt 2008;13:1–4.

    Article  Google Scholar 

  24. Chang TC. Clinical application of thyroid and parathyroid ultrasonography in the outpatient clinic. J Med Ultrasound 2007;15:135–140.

    Article  Google Scholar 

  25. Hatakeyama J, Sakamoto S, Kageyama R. Hes1 and Hes5 regulate the development of the cranial and spinal nerve systems. Dev Neurosci 2006;28:92–101.

    Article  PubMed  Google Scholar 

  26. Kerem G, Yoshimoto M, Yamamoto N, Yang CY, Ito H. Somatotopic organization of the trigeminal ganglion cells in a cichlid fish, Oreochromis (Tilapia) niloticus. Brain Behav Evol 2005;65:109–126.

    Article  PubMed  Google Scholar 

  27. Leiser S, Moxon KA. Relationship between physiological response type (RA and SA) and vibrissal receptive field of neurons within the rat trigeminal ganglion. J Neurophysiol 2006;95:3129–3145.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidekazu Aoyagi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aoyagi, H., Tsuchikawa, K. & Iwasaki, Si. Three-dimensional observation of the mouse embryo by micro-computed tomography: composition of the trigeminal ganglion. Odontology 98, 26–30 (2010). https://doi.org/10.1007/s10266-009-0112-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10266-009-0112-9

Key words

Navigation