Skip to main content
Log in

Quantitative analyses on dynamic changes in the organization of host Arabidopsis thaliana actin microfilaments surrounding the infection organ of the powdery mildew fungus Golovinomyces orontii

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Obligate biotrophic fungi that cause powdery mildew on host plants form a specialized infection organ called the haustorium in the host apoplast. It was previously reported that the haustorium is surrounded by host actin microfilaments (AFs). The previous study used fixed cells, in which AFs were stained with fluorescently labeled phalloidine, therefore the structural dynamics of haustorium-surrounding AFs has not been examined. In the present study, we performed a live imaging analysis to examine the dynamics and developmental changes in the organization of haustorium-surrounding host AFs using host Arabidopsis thaliana and A. thaliana-adapted powdery mildew fungus Golovinomyces orontii. Image correlation-based velocimetry analysis suggested that AFs around haustorium are rather static compared to the dynamicity of AFs at the cell surface. Quantification of AF density and bundling showed that the density, but not the level of bundling, of haustorium-surrounding AFs increased as the haustorium matures. The possible role of AFs around haustoria is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AF:

Actin microfilament

Bgh :

Blumeria graminis f. sp. hordei

CLSM:

Confocal laser scanning microscope

Dpi:

Day(s) post inoculation

GFP:

Green fluorescent protein

PI:

Propidium iodide

3D:

Three-dimensional

References

  • Bolte S, Cordelieres FP (2006) A guided tour into subcellular colocalization analysis in light microscopy. J Microsc 224:213–232

    Article  PubMed  CAS  Google Scholar 

  • de Almeida Engler J, Van Poucke K, Karimi M, De Groodt R, Gheysen G, Engler G, Gheysen G (2004) Dynamic cytoskeleton rearrangements in giant cells and syncytia of nematode-infected roots. Plant J 38:12–26

    Article  Google Scholar 

  • Day B, Henty JL, Porter KJ, Staiger CJ (2011) The pathogen-actin connection: a platform for defense signaling in plants. Annu Rev Phytopathol 49:483–506

    Article  PubMed  CAS  Google Scholar 

  • Dean R, Van Kan JA, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J, Foster GD (2012) The top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13:414–430

    Article  PubMed  Google Scholar 

  • Dyachok J, Sparks JA, Liao F, Wang YS, Blancaflor EB (2014) Fluorescent protein-based reporters of the actin cytoskeleton in living plant cells: fluorophore variant, actin binding domain, and promoter considerations. Cytoskeleton 71:311–327

    Article  PubMed  CAS  Google Scholar 

  • Era A, Tominaga M, Ebine K, Awai C, Saito C, Ishizaki K, Yamato KT, Kohchi T, Nakano A, Ueda T (2009) Application of Lifeact reveals F-actin dynamics in Arabidopsis thaliana and the liverwort, Marchantia polymorpha. Plant Cell Physiol 50:1041–1048

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Favery B, Chelysheva LA, Lebris M, Jammes F, Marmagne A, De Almeida-Engler J, Lecomte P, Vaury C, Arkowitz RA, Abad P (2004) Arabidopsis formin AtFH6 is a plasma membrane-associated protein upregulated in giant cells induced by parasitic nematodes. Plant Cell 16:2529–2540

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gavrin A, Jansen V, Ivanov S, Bisseling T, Fedorova E (2015) ARP2/3-Mediated actin nucleation associated with symbiosome membrane is essential for the development of symbiosomes in infected cells of Medicago truncatula root nodules. Mol Plant-Microbe Interact 28:605–614

    Article  PubMed  CAS  Google Scholar 

  • Henty-Ridilla JL, Shimono M, Li J, Chang JH, Day B, Staiger CJ (2013) The plant actin cytoskeleton responds to signals from microbe-associated molecular patterns. PLoS Pathog 9:e1003290

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Henty-Ridilla JL, Li J, Day B, Staiger CJ (2014) ACTIN DEPOLYMERIZING FACTOR4 regulates actin dynamics during innate immune signaling in Arabidopsis. Plant Cell 26:340–352

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Higaki T, Kutsuna N, Okubo E, Sano T, Hasezawa S (2006) Actin microfilaments regulate vacuolar structures and dynamics: dual observation of actin microfilaments and vacuolar membrane in living tobacco BY-2 cells. Plant Cell Physiol 47:839–852

    Article  PubMed  CAS  Google Scholar 

  • Higaki T, Sano T, Hasezawa S (2007) Actin microfilament dynamics and actin side-binding proteins in plants. Curr Opin Plant Biol 10:549–556

    Article  PubMed  CAS  Google Scholar 

  • Higaki T, Kojo KH, Hasezawa S (2010a) Critical role of actin bundling in plant cell morphogenesis. Plant Signal Behav 5:484–488

    Article  PubMed  CAS  Google Scholar 

  • Higaki T, Kutsuna N, Sano T, Kondo N, Hasezawa S (2010b) Quantification and cluster analysis of actin cytoskeletal structures in plant cells: role of actin bundling in stomatal movement during diurnal cycles in Arabidopsis guard cells. Plant J 61:156–165

    Article  PubMed  CAS  Google Scholar 

  • Higaki T, Kurusu T, Hasezawa S, Kuchitsu K (2011) Dynamic intracellular reorganization of cytoskeletons and the vacuole in defense responses and hypersensitive cell death in plants. J Plant Res 124:315–324

    Article  PubMed  Google Scholar 

  • Inada N, Savory EA (2011) Inhibition of prepenetration processes of the powdery mildew Golovinomyces orontii on host inflorescence stems is reduced in the Arabidopsis cuticular mutant cer3 but not in cer1. J Gen Plant Pathol 77:273–281

    Article  Google Scholar 

  • Kang Y, Jelenska J, Cecchini NM, Li Y, Lee MW, Kovar DR, Greenberg JT (2014) HopW1 from Pseudomonas syringae disrupts the actin cytoskeleton to promote virulence in Arabidopsis. PLoS Pathog 10:e1004232

    Article  PubMed  PubMed Central  Google Scholar 

  • Katiyar-Agarwal S, Jin HL (2010) Role of small RNAs in host-microbe interactions. Annu Rev Phytopathol 48(48):225–246

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kato T, Morita MT, Tasaka M (2010) Defects in dynamics and functions of actin filament in Arabidopsis caused by the dominant-negative actin fiz1-induced fragmentation of actin filament. Plant Cell Physiol 51:333–338

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi Y, Kobayashi I, Funaki Y, Fujimoto S, Takemoto T, Kunoh H (1997a) Dynamic reorganization of microfilaments and microtubules is necessary for the expression of non-host resistance in barley coleoptile cells. Plant J 11:525–537

    Article  CAS  Google Scholar 

  • Kobayashi Y, Yamada M, Kobayashi I, Kunoh H (1997b) Actin microfilaments are required for the expression of nonhost resistance in higher plants. Plant Cell Physiol 38:725–733

    Article  CAS  Google Scholar 

  • Koh S, Andre A, Edwards H, Ehrhardt D, Somerville S (2005) Arabidopsis thaliana subcellular responses to compatible Erysiphe cichoracearum infections. Plant J 44:516–529

    Article  PubMed  CAS  Google Scholar 

  • Kost B, Spielhofer P, Chua NH (1998) A GFP-mouse talin fusion protein labels plant actin filaments in vivo and visualizes the actin cytoskeleton in growing pollen tubes. Plant J 16:393–401

    Article  PubMed  CAS  Google Scholar 

  • Li J, Henty-Ridilla JL, Staiger BH, Day B, Staiger CJ (2015) Capping protein integrates multiple MAMP signalling pathways to modulate actin dynamics during plant innate immunity. Nat Commun 6:7206

    Article  PubMed  PubMed Central  Google Scholar 

  • Meyer D, Pajonk S, Micali C, O’Connell R, Schulze-Lefert P (2009) Extracellular transport and integration of plant secretory proteins into pathogen-induced cell wall compartments. Plant J 57:986–999

    Article  PubMed  CAS  Google Scholar 

  • Micali C, Gollner K, Humphry M, Consonni C, Panstruga R (2008) The powdery mildew disease of Arabidopsis: a paradigm for the interaction between plants and biotrophic fungi. Am Soc Plant Biol Arabidopsis Book. doi:10.1199/tab.0115

    Google Scholar 

  • Micali CO, Neumann U, Grunewald D, Panstruga R, O’Connell R (2011) Biogenesis of a specialized plant-fungal interface during host cell internalization of Golovinomyces orontii haustoria. Cell Microbiol 13:210–226

    Article  PubMed  CAS  Google Scholar 

  • Miklis M, Consonni C, Bhat RA, Lipka V, Schulze-Lefert P, Panstruga R (2007) Barley MLO modulates actin-dependent and actin-independent antifungal defense pathways at the cell periphery. Plant Physiol 144:1132–1143

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Opalski KS, Schultheiss H, Kogel KH, Huckelhoven R (2005) The receptor-like MLO protein and the RAC/ROP family G-protein RACB modulate actin reorganization in barley attacked by the biotrophic powdery mildew fungus Blumeria graminis f.sp. hordei. Plant J 41:291–303

    Article  PubMed  CAS  Google Scholar 

  • Plotnikova JM, Reuber TL, Ausubel FM (1998) Powdery mildew pathogenesis of Arabidopsis thaliana. Mycologia 90:1009–1016

    Article  Google Scholar 

  • Shimada C, Lipka V, O’Connell R, Okuno T, Schulze-Lefert P, Takano Y (2006) Nonhost resistance in Arabidopsis-Colletotrichum interactions acts at the cell periphery and requires actin filament function. Mol Plant-Microbe Interact 19:270–279

    Article  PubMed  CAS  Google Scholar 

  • Sun C, Vallotton P (2009) Fast linear feature detection using multiple directional non-maximum suppression. J Microsc 234:147–157

    Article  PubMed  CAS  Google Scholar 

  • Takamatsu S (2004) Phylogeny and evolution of the powdery mildew funi (Erysiphales, Ascomycota) inferred from nuclear ribosomal DNA sequences. Mycoscience 45:147–157

    Article  CAS  Google Scholar 

  • Takemoto D, Hardham AR (2004) The cytoskeleton as a regulator and target of biotic interactions in plants. Plant Physiol 136:3864–3876

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Takemoto D, Jones DA, Hardham AR (2003) GFP-tagging of cell components reveals the dynamics of subcellular re-organization in response to infection of Arabidopsis by oomycete pathogens. Plant J 33:775–792

    Article  PubMed  CAS  Google Scholar 

  • Ueda H, Yokota E, Kutsuna N, Shimada T, Tamura K, Shimmen T, Hasezawa S, Dolja VV, Hara-Nishimura I (2010) Myosin-dependent endoplasmic reticulum motility and F-actin organization in plant cells. Proc Natl Acad Sci USA 107:6894–6899

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Ms. Shitomi Nakagawa for her experimental support. We also thank Prof. Masao Tasaka, the late Prof. Ko Shimamoto, Prof. Takashi Hashimoto and members of his laboratory, and members of the Plant Global Education Project at NAIST for valuable discussions. The A. thaliana line expressing GFP-hTalin was provided by Dr Adrienne Hardham at the Australian National University. The KBI ImageJ plug-in used in this study was developed by Dr. Natsumaro Kutsuna at The University of Tokyo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noriko Inada.

Ethics declarations

Funding

This work was supported by a Scientific Research for Plant Graduate Student from NAIST, supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) to N.I. and a Grant-in-Aid for Scientific Research (25711017 for T.H. and 24114007 and 25291056 for S.H.).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inada, N., Higaki, T. & Hasezawa, S. Quantitative analyses on dynamic changes in the organization of host Arabidopsis thaliana actin microfilaments surrounding the infection organ of the powdery mildew fungus Golovinomyces orontii . J Plant Res 129, 103–110 (2016). https://doi.org/10.1007/s10265-015-0769-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-015-0769-9

Keywords

Navigation