Skip to main content

Advertisement

Log in

Functional analyses of the plant-specific C-terminal region of VPS9a: the activating factor for RAB5 in Arabidopsis thaliana

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstracts

Recent studies demonstrated that endosomal transport played important roles in various plant functions. The RAB GTPase regulates the tethering and fusion steps of vesicle trafficking to target membranes in each trafficking pathway by acting as a molecular switch. RAB GTPase activation is catalyzed by specific guanine nucleotide exchange factors (GEFs) that promote the exchange of GDP on the RAB GTPase with GTP. RAB5 is a key regulator of endosomal trafficking and is uniquely diversified in plants; the plant-unique RAB5 group ARA6 was acquired in addition to conventional RAB5 during evolution. In Arabidopsis thaliana, conventional RAB5, ARA7 and RHA1 regulate the endosomal/vacuolar trafficking pathways, whereas ARA6 acts in the pathway from the endosome to the plasma membrane. Despite their distinct functions, all RAB5 members are activated by the common GEF VACUOLAR PROTEIN SORTING 9a (VPS9a). VPS9a consists of an N-terminal conserved domain and C-terminal region (CTR) with no similarity to known functional domains. In this study, we investigated the function of the CTR by generating truncated versions of VPS9a and found that it was specifically responsible for ARA6 regulation; moreover, the CTR was required for the oligomerization and correct localization of VPS9a. The oligomerization of VPS9a was mediated by a distinctive region consisting of 36 amino acids in the CTR that was conserved in plant RAB5 GEFs. Thus the VPS9a CTR plays an important role in the regulation of the two RAB5 groups in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Asaoka R, Uemura T, Ito J, Fujimoto M, Ito E, Ueda T, Nakano A (2013) Arabidopsis RABA1 GTPases are involved in transport between the trans-Golgi network and the plasma membrane, and are required for salinity stress tolerance. Plant J 73:240–249

    Article  PubMed  CAS  Google Scholar 

  • Bolte S, Brown S, Satiat-Jeunemaitre B (2004) The N-myristoylated Rab-GTPase m-Rabmc is involved in post-Golgi trafficking events to the lytic vacuole in plant cells. J Cell Sci 117:943–954

    Article  PubMed  CAS  Google Scholar 

  • Bottanelli F, Foresti O, Hanton S, Denecke J (2011) Vacuolar transport in tobacco leaf epidermis cells involves a single route for soluble cargo and multiple routes for membrane cargo. Plant Cell 23:3007–3025

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bravo-Sagua R, Torrealba N, Paredes F, Morales PE, Pennanen C, López-Crisosto C, Troncoso R, Criollo A, Chiong M, Hill JA, Simmen T, Quest AF, Lavandero S (2014) Organelle communication: signaling crossroads between homeostasis and disease. Int J Biochem Cell Biol 50:55–59

    Article  PubMed  CAS  Google Scholar 

  • Burd CG, Mustol PA, Schu PV, Emr SD (1996) A yeast protein related to a mammalian Ras-binding protein, Vps9p, is required for localization of vacuolar proteins. Mol Cell Biol 16:2369–2377

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carney DS, Davies BA, Horazdovsky BF (2006) Vps9 domain-containing proteins: activators of Rab5 GTPases from yeast to neurons. Trends Cell Biol 16:27–35

    Article  PubMed  CAS  Google Scholar 

  • Choi S, Tamaki T, Ebine K, Uemura T, Ueda T, Nakano A (2013) RABA members act in distinct steps of subcellular trafficking of the FLAGELLIN SENSING2 receptor. Plant Cell 25:1174–1187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chow C-M, Neto H, Foucart C, Moore I (2008) Rab-A2 and Rab-A3 GTPases define a trans-Golgi endosomal membrane domain in Arabidopsis that contributes substantially to the cell plate. Plant Cell 20:101–123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Dacks JB, Field MC (2007) Evolution of the eukaryotic membrane-trafficking system: origin, tempo and mode. J Cell Sci 120:2977–2985

    Article  PubMed  CAS  Google Scholar 

  • Dacks JB, Poon PP, Field MC (2008) Phylogeny of endocytic components yields insight into the process of nonendosymbiotic organelle evolution. Proc Natl Acad Sci USA 105:588–593

    Article  PubMed  PubMed Central  Google Scholar 

  • De Graaf BHJ, Cheung AY, Andreyeva T, Levasseur K, Kieliszewski M, Wu H (2005) Rab11 GTPase-regulated membrane trafficking is crucial for tip-focused pollen tube growth in tobacco. Plant Cell 17:2564–2579

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ebine K, Fujimoto M, Okatani Y, Nishiyama T, Goh T, Ito E, Dainobu T, Nishitani A, Uemura T, Sato MH, Thordal-Christensen H, Tsutsumi N, Nakano A, Ueda T (2011) A membrane trafficking pathway regulated by the plant-specific RAB GTPase ARA6. Nat Cell Biol 13:853–859

    Article  PubMed  CAS  Google Scholar 

  • Feraru E, Feraru MI, Asaoka R, Paciorek T, De Rycke R, Tanaka H, Nakano A, Friml J (2012) BEX5/RabA1b regulates trans-Golgi network-to-plasma membrane protein trafficking in Arabidopsis. Plant Cell 24:3074–3086

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Field MC, Natesan SKA, Gabernet-Castello C, Lila Koumandou V (2007) Intracellular trafficking in the trypanosomatids. Traffic 8:629–639

    Article  PubMed  CAS  Google Scholar 

  • Fukuda M, Wen L, Satoh-Cruz M, Kawagoe Y, Nagamura Y, Okita TW, Washida H, Sugino A, Ishino Y, Ishino S, Ogawa M, Sunada M, Ueda T, Kumamaru T (2013) A guanine nucleotide exchange factor for Rab5 proteins is essential for intracellular transport of the proglutelin from the Golgi apparatus to the protein storage vacuole in rice endosperm. Plant Physiol 162:663–674

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goh T, Uchida W, Arakawa S, Ito E, Dainobu T, Ebine K, Takeuchi M, Sato K, Ueda T, Nakano A (2007) VPS9a, the common activator for two distinct types of Rab5 GTPases, is essential for the development of Arabidopsis thaliana. Plant Cell 19:3504–3515

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grebe M, Xu J, Möbius W, Ueda T, Nakano A, Geuze HJ, Rook MB, Scheres B (2003) Arabidopsis sterol endocytosis involves actin-mediated trafficking via ARA6-positive early endosomes. Curr Biol 13:1378–1387

    Article  PubMed  CAS  Google Scholar 

  • Green EG, Ramm E, Riley NM, Spiro DJ, Goldenring JR, Wessling-Resnick M (1997) Rab11 is associated with transferrin-containing recycling compartments in K562 cells. Biochem Biophys Res Commun 239:612–616

    Article  PubMed  CAS  Google Scholar 

  • Grosshans BL, Ortiz D, Novick P (2006) Rabs and their effectors: achieving specificity in membrane traffic. Proc Natl Acad Sci USA 103:11821–11827

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Haas TJ, Sliwinski MK, Martínez DE, Preuss M, Ebine K, Ueda T, Nielsen E, Odorizzi G, Otegui MS (2007) The Arabidopsis AAA ATPase SKD1 is involved in multivesicular endosome function and interacts with its positive regulator LYST-INTERACTING PROTEIN5. Plant Cell 19:1295–1312

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hama H, Tall GG, Horazdovsky BF (1999) Vps9p is a guanine nucleotide exchange factor involved in vesicle-mediated vacuolar protein transport. J Biol Chem 274:15284–15291

    Article  PubMed  CAS  Google Scholar 

  • Hoepflinger MC, Geretschlaeger A, Sommer A, Hoeftberger M, Nishiyama T, Sakayama H, Hammerl P, Tenhaken R, Ueda T, Foissner I (2013) Molecular and biochemical analysis of the first ARA6 homologue, a RAB5 GTPase, from green algae. J Exp Bot 64:5553–5568

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hoepflinger MC, Geretschlaeger A, Sommer A, Hoeftberger M, Hametner C, Ueda T, Foissner I (2015) Molecular analysis and localization of CaARA7 a conventional RAB5 GTPase from characean algae. Traffic 16:534–554

    Article  PubMed  CAS  Google Scholar 

  • Horiuchi H, Lippé R, McBride HM, Rubino M, Woodman P, Stenmark H, Rybin V, Wilm M, Ashman K, Mann M, Zerial M (1997) A novel Rab5 GDP/GTP exchange factor complexed to Rabaptin-5 links nucleotide exchange to effector recruitment and function. Cell 90:1149–1159

    Article  PubMed  CAS  Google Scholar 

  • Ito E, Fujimoto M, Ebine K, Uemura T, Ueda T, Nakano A (2012) Dynamic behavior of clathrin in Arabidopsis thaliana unveiled by live imaging. Plant J 69:204–216

    Article  PubMed  CAS  Google Scholar 

  • Jaillais Y, Fobis-Loisy I, Miège C, Gaude T (2008) Evidence for a sorting endosome in Arabidopsis root cells. Plant J 53:237–247

    Article  PubMed  CAS  Google Scholar 

  • Kotzer AM, Brandizzi F, Neumann U, Paris N, Moore I, Hawes C (2004) AtRabF2b (Ara7) acts on the vacuolar trafficking pathway in tobacco leaf epidermal cells. J Cell Sci 117:6377–6389

    Article  PubMed  CAS  Google Scholar 

  • Kunita R, Otomo A, Mizumura H, Suzuki K, Showguchi-Miyata J, Yanagisawa Y, Hadano S, Ikeda JE (2004) Homo-oligomerization of ALS2 through its unique carboxyl-terminal regions is essential for the ALS2-associated Rab5 guanine nucleotide exchange activity and its regulatory function on endosome trafficking. J Biol Chem 279:38626–38635

    Article  PubMed  CAS  Google Scholar 

  • Lippé R, Miaczynska M, Rybin V, Runge A, Zerial M (2001) Functional synergy between Rab5 effector Rabaptin-5 and exchange factor Rabex-5 when physically associated in a complex. Mol Biol Cell 12:2219–2228

    Article  PubMed  PubMed Central  Google Scholar 

  • Mackiewicz P, Wyroba E (2009) Phylogeny and evolution of Rab7 and Rab9 proteins. BMC Evol Biol 9:101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mattera R, Yien CT, Weissman AM, Bonifacino JS (2006) The Rab5 guanine nucleotide exchange factor Rabex-5 binds ubiquitin (Ub) and functions as a Ub ligase through an atypical Ub-interacting motif and a zinc finger domain. J Biol Chem 281:6874–6883

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nakagawa T, Kurose T, Hino T, Tanaka K, Kawamukai M, Niwa Y, Toyooka K, Matsuoka K, Jinbo T, Kimura T (2007) Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation. J Biosci Bioeng 104:34–41

    Article  PubMed  CAS  Google Scholar 

  • Penengo L, Mapelli M, Murachelli AG, Confalonieri S, Magri L, Musacchio A, Di Fiore PP, Polo S, Schneider TR (2006) Crystal structure of the ubiquitin binding domains of Rabex-5 reveals two modes of interaction with ubiquitin. Cell 124:1183–1195

    Article  PubMed  CAS  Google Scholar 

  • Pereira-Leal JB (2008) The Ypt/Rab family and the evolution of trafficking in fungi. Traffic 9:27–38

    Article  PubMed  CAS  Google Scholar 

  • Platta HW, Stenmark H (2011) Endocytosis and signaling. Curr Opin Cell Biol 23:393–403

    Article  PubMed  CAS  Google Scholar 

  • Prag G, Misra S, Jones EA, Ghirlando R, Davies BA, Horazdovsky BF, Hurley JH (2003) Mechanism of ubiquitin recognition by the CUE domain of Vps9p. Cell 113:609–620

    Article  PubMed  CAS  Google Scholar 

  • Ren M, Xu G, Zeng J, De Lemos-Chiarandini C, Adesnik M, Sabatini DD (1998) Hydrolysis of GTP on rab11 is required for the direct delivery of transferrin from the pericentriolar recycling compartment to the cell surface but not from sorting endosomes. Proc Natl Acad Sci USA 95:6187–6192

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rutherford S, Moore I (2002) The Arabidopsis Rab GTPase family: another enigma variation. Curr Opin Plant Biol 5:518–528

    Article  PubMed  CAS  Google Scholar 

  • Sato M, Sato K, Fonarev P, Huang C-J, Liou W, Grant BD (2005) Caenorhabditis elegans RME-6 is a novel regulator of RAB-5 at the clathrin-coated pit. Nat Cell Biol 7:559–569

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schwartz SL, Cao C, Pylypenko O, Rak A, Wandinger-Ness A (2007) Rab GTPases at a glance. J Cell Sci 120:3905–3910

    Article  PubMed  CAS  Google Scholar 

  • Sohn EJ, Kim ES, Zhao M, Kim SJ, Kim H, Kim Y-W, Lee YJ, Hillmer S, Sohn U, Jiang L, Hwang I (2003) Rha1, an Arabidopsis Rab5 homolog, plays a critical role in the vacuolar trafficking of soluble cargo proteins. Plant Cell 15:1057–1070

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stenmark H (2009) Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 10:513–525

    Article  PubMed  CAS  Google Scholar 

  • Stierhof YD, El Kasmi F (2010) Strategies to improve the antigenicity, ultrastructure preservation and visibility of trafficking compartments in Arabidopsis tissue. Eur J Cell Biol 89:285–297

    Article  PubMed  CAS  Google Scholar 

  • Szumlanski AL, Nielsen E (2009) The Rab GTPase RabA4d regulates pollen tube tip growth in Arabidopsis thaliana. Plant Cell 21:526–544

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tall GG, Barbieri MA, Stahl PD, Horazdovsky BF (2001) Ras-activated endocytosis is mediated by the Rab5 guanine nucleotide exchange activity of RIN1. Dev Cell 1:73–82

    Article  PubMed  CAS  Google Scholar 

  • Tian G-W, Mohanty A, Chary SN, Li S, Paap B, Drakakaki G, Kopec CD, Li J, Ehrhardt D, Jackson D, Rhee SY, Raikhel NV, Citovsky V (2004) High-throughput fluorescent tagging of full-length Arabidopsis gene products in planta. Plant Physiol 135:25–38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ueda T, Yamaguchi M, Uchimiya H, Nakano A (2001) Ara6, a plant-unique novel type Rab GTPase, functions in the endocytic pathway of Arabidopsis thaliana. EMBO J 20:4730–4741

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ueda T, Uemura T, Sato MH, Nakano A (2004) Functional differentiation of endosomes in Arabidopsis cells. Plant J 40:783–789

    Article  PubMed  CAS  Google Scholar 

  • Uejima T, Ihara K, Goh T, Ito E, Sunada M, Ueda T, Nakano A, Wakatsuki S (2010) GDP-bound and nucleotide-free intermediates of the guanine nucleotide exchange in the Rab5·Vps9 system. J Biol Chem 285:36689–36697

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ullrich O, Reinsch S, Urbé S, Zerial M, Parton RG (1996) Rab11 regulates recycling through the pericentriolar recycling endosome. J Cell Biol 135:913–924

    Article  PubMed  CAS  Google Scholar 

  • Zhu H, Liang Z, Li G (2009) Rabex-5 is a Rab22 effector and mediates a Rab22–Rab5 signaling cascade in endocytosis. Mol Biol Cell 20:4072–4729

    Google Scholar 

Download references

Acknowledgments

We thank Dr. T. Nakagawa (Shimane University), Dr. S. Shimizu (Tokyo Medical and Dental University) and Dr. T. Demura (NAIST) for sharing materials and Dr. K. Ebine and Dr. E. Ito (The University of Tokyo) for critical reading of the manuscript. This study was supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan (A.N. and T.U.), JST, PRESTO (T.U.), and a Grant-in-Aid for JSPS Fellows (M.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Ueda.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure S1 (PDF 51 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sunada, M., Goh, T., Ueda, T. et al. Functional analyses of the plant-specific C-terminal region of VPS9a: the activating factor for RAB5 in Arabidopsis thaliana . J Plant Res 129, 93–102 (2016). https://doi.org/10.1007/s10265-015-0760-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-015-0760-5

Keywords

Navigation