Skip to main content
Log in

AgarTrap-mediated genetic transformation using intact gemmae/gemmalings of the liverwort Marchantia polymorpha L.

  • Technical Note
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

The dioecious liverwort, Marchantia polymorpha L., is an emerging model plant. Various molecular biological techniques have been optimized for M. polymorpha for the past several years, and recently we reported a simplified Agrobacterium-mediated transformation method using sporelings (immature thalli from spores) of M. polymorpha. This method, termed AgarTrap (Agar-utilized Transformation with Pouring Solutions), completed by exchanging appropriate solutions on a single Petri dish to produce a sufficient number of independent transgenic sporelings. However, because spores are produced by crosses between males and females, the genetic backgrounds of resulting transgenic sporelings are not uniform. To easily produce transgenic liverworts with a uniform genetic background using AgarTrap, we developed an AgarTrap-mediated transformation method using intact gemmae/gemmalings produced by asexual reproduction. Using AgarTrap with male and female gemmae/gemmalings produced a sufficient number of independent transgenic gemmalings with uniform genetic backgrounds. The optimized transformation efficiencies were approximately 30 and 50 % in males and females, respectively. As with AgarTrap using sporelings, AgarTrap using intact gemmae/gemmalings will be useful in promoting studies of the molecular biology of M. polymorpha.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Barnes CR, Land WJG (1908) Bryological papers. II. The origin of the cupule of Marchantia. Bot Gaz 46:401–409

    Article  Google Scholar 

  • Bubner B, Gase K, Baldwin IT (2004) Two-fold differences are the detection limit for determining transgene copy numbers in plants by real-time PCR. BMC Biotechnol 4:14

    Article  PubMed Central  PubMed  Google Scholar 

  • Chiyoda S, Ishizaki K, Kataoka K, Yamato KT, Kohchi T (2008) Direct transformation of the liverwort Marchantia polymorpha L. by particle bombardment using immature thalli developing from spores. Plant Cell Rep 27:1467–1473

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Deblaere R, Bytebier B, De Greve H, Deboeck F, Schell J, Van Montagu M et al (1985) Efficient octopine Ti plasmid derived vectors for Agrobacterium-mediated gene transfer to plants. Nucleic Acids Res 13:4777–4788

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  CAS  PubMed  Google Scholar 

  • Ingham DJ, Beer S, Money S, Hansen G (2001) Quantitative real-time PCR assay for determining transgene copy number in transformed plants. Biotechniques 31:132–140

    CAS  PubMed  Google Scholar 

  • Ishizaki K, Chiyoda S, Yamato KT, Kohchi T (2008) Agrobacterium-mediated transformation of the haploid liverwort Marchantia polymorpha L., an emerging model for plant biology. Plant Cell Physiol 49:1084–1091

    Article  CAS  PubMed  Google Scholar 

  • Ishizaki K, Nonomura M, Kato H, Yamato KT, Kohchi T (2012) Visualization of auxin-mediated transcriptional activation using a common auxin-response reporter system in the liverwort Marchantia polymorpha. J Plant Res 125:643–651

    Article  CAS  PubMed  Google Scholar 

  • Kubota A, Ishizaki K, Kohchi T (2013) Efficient Agrobacterium-mediated transformation of the liverwort Marchantia polymorpha using regenerating thalli. Biosci Biotech Biochem 77:167–172

    Article  CAS  Google Scholar 

  • Mason G, Provero P, Vaira AM, Accotto GP (2002) Estimating the number of integrations in transformed plants by quantitative real-time PCR. BMC Biotechnol 2:20

    Article  PubMed Central  PubMed  Google Scholar 

  • Nasu M, Tani K, Hattori C, Honda M, Shimaoka T, Yamaguchi N et al (1997) Efficient transformation of Marchantia polymorpha that is haploid and has a very small genome DNA. J Ferment Bioeng 84:519–523

    Article  CAS  Google Scholar 

  • Oda K, Yamato K, Ohta E, Nakamura Y, Takemura M, Nozato N et al (1992) Gene organization deduced from the complete sequence of liverwort Marchantia polymorpha mitochondrial DNA. A primitive form of plant mitochondrial genome. J Mol Biol 223:1–7

    Article  CAS  PubMed  Google Scholar 

  • Ogasawara Y, Ishizaki K, Kohchi T, Kodama Y (2013) Cold-induced organelle relocation in the liverwort Marchantia polymorpha L. Plant Cell Environ 36:1520–1528

    Article  CAS  PubMed  Google Scholar 

  • Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S et al (1986) Chloroplast gene organization deduced from the complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature 322:572–574

    Article  CAS  Google Scholar 

  • Ono K, Ohyama K, Gamborg OL (1979) Regeneration of the liverwort Marchantia polymorpha L. from protoplasts isolated from cell suspension culture. Plant Sci Lett 14:225–229

    Article  Google Scholar 

  • Qiu YL, Li L, Wang B, Chen Z, Knoop V, Groth-Malonek M et al (2006) The deepest divergences in land plants inferred from phylogenomic evidence. Proc Natl Acad Sci USA 103:15511–15516

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Takenaka M, Yamaoka S, Hanajiri T, Shimizu-Ueda Y, Yamato KT, Fukuzawa H et al (2000) Direct transformation and plant regeneration of the haploid liverwort Marchantia polymorpha L. Transgenic Res 9:179–185

    Article  CAS  PubMed  Google Scholar 

  • Tsuboyama S, Kodama Y (2014) AgarTrap: a simplified Agrobacterium-mediated transformation method for sporelings of the liverwort Marchantia polymorpha L. Plant Cell Physiol 55:229–236

    Article  CAS  PubMed  Google Scholar 

  • Yamato KT, Ishizaki K, Fujisawa M, Okada S, Nakayama S, Fujishita M et al (2007) Gene organization of the liverwort Y chromosome reveals distinct sex chromosome evolution in a haploid system. Proc Natl Acad Sci USA 104:6472–6477

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang L, Ding J, Zhang C, Jia J, Weng H, Liu W et al (2005) Estimating the copy number of transgene in transformed rice by real-time quantitative PCR. Plant Cell Rep 23:759–763

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Christopher Suarez (University of Notre Dame) for critical reading of the manuscript. The authors also thank Dr. Takayuki Kohchi (Kyoto University) for providing Tak-1 and BC3-38 lines. This work was supported by the Plant Transgenic Design Initiative of University of Tsukuba (Y. K.), the Japan Society for the Promotion of Science Research (JSPS) KAKENHI (No. 26840088) (Y. K.) and research Projects [CORE Adopted, CDI-F, UU-COE and UU-COE-next] of Utsunomiya University (Y. K).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutaka Kodama.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 23715 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsuboyama-Tanaka, S., Kodama, Y. AgarTrap-mediated genetic transformation using intact gemmae/gemmalings of the liverwort Marchantia polymorpha L.. J Plant Res 128, 337–344 (2015). https://doi.org/10.1007/s10265-014-0695-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-014-0695-2

Keywords

Navigation