Skip to main content
Log in

Mechanical load induces upregulation of transcripts for a set of genes implicated in secondary wall formation in the supporting tissue of Arabidopsis thaliana

  • Short Communication
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

We examined the effects of mechanical load on transcripts of a set of cell wall related genes that are implicated in the formation of supporting tissues, by applying a 50 mg strip of aluminum foil to the inflorescence stem of Arabidopsis thaliana, a weight roughly half the fresh weight of the stem. Transcript levels of 12 of the 15 genes examined were increased by load application, as were the levels of some transcription factors that regulate secondary wall formation. These findings support the involvement of a load-sensing system in regulation of supporting tissue formation via transcriptional regulation of cell wall related genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

GUS:

β -Glucuronidase

RT-PCR:

Reverse-transcription polymerase chain reaction

References

  • Batiza AF, Schulz T, Masson PH (1996) Yeast respond to hypotonic shock with a calcium pulse. J Biol Chem 271:23357–23362

    Article  CAS  PubMed  Google Scholar 

  • Blee KA, Choi JW, O’Connell AP, Schuch W, Lewis NG, Bolwell GP (2003) A lignin-specific peroxidase in tobacco whose antisense suppression leads to vascular tissue modification. Phytochemistry 64:163–176

    Article  CAS  PubMed  Google Scholar 

  • Braam J (2005) In touch: plant responses to mechanical stimuli. New Phytol 165:373–389

    Article  PubMed  Google Scholar 

  • Braam J, Davis RW (1990) Rain-, wind-, and touch-induced expression of calmodulin and calmodulin-related genes in Arabidopsis. Cell 60:357–364

    Article  CAS  PubMed  Google Scholar 

  • Brown DM, Zeef LAH, Ellis J, Goodacre R, Turner SR (2005) Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics. Plant Cell 17:2281–2295

    Article  CAS  PubMed  Google Scholar 

  • Cai X, Davis EJ, Ballif J, Liang M, Bushman E, Haroldsen V, Torabinejad J, Wu Y (2006) Mutant identification and characterization of the laccase gene family in Arabidopsis. J Exp Bot 57:2563–2569

    Article  CAS  PubMed  Google Scholar 

  • Chan C-S, Guo L, Shih M-C (2001) Promoter analysis of the nuclear gene encoding the chloroplast glyceraldehyde-3-phosphate dehydrogenase B subunit of Arabidopsis thaliana. Plant Mol Biol 46:131–141

    Article  CAS  PubMed  Google Scholar 

  • Chehab EW, Eich E, Braam J (2009) Thigmomorphogenesis: a complex plant response to mechano-stimulation. J Exp Bot 60:43–56

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip, a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Fukaki H, Fujisawa H, Tasaka M (1996) Gravitropic response of inflorescence stems in Arabidopsis thaliana. Plant Physiol 110:933–943

    Article  CAS  PubMed  Google Scholar 

  • Giuliano G, Pichersky E, Malik VS, Timko MP, Scolnik PA, Cashmore AR (1988) An evolutionarily conserved protein binding sequence upstream of a plant light-regulated gene. Proc Natl Acad Sci USA 85:7089–7093

    Article  CAS  PubMed  Google Scholar 

  • Hoson T, Soga K (2003) New aspects of gravity responses in plant cells. Int Rev Cytol 229:209–244

    Article  CAS  PubMed  Google Scholar 

  • Hoson T, Nishitani K, Miyamoto K, Ueda J, Kamisaka S, Yamamoto R, Masuda Y (1996) Effects of hypergravity on growth and cell wall properties of cress hypocotyls. J Exp Bot 47:513–517

    Article  CAS  PubMed  Google Scholar 

  • Iida H, Nakamura H, Ono T, Okumura MS, Anraku Y (1994) MID1, a novel Saccharomyces cerevisiae gene encoding a plasma membrane protein, is required for Ca2+ influx and mating. Mol Cell Biol 14:8259–8271

    CAS  PubMed  Google Scholar 

  • Iliev EA, Xu W, Polisensky DH, Oh MH, Torisky RS, Clouse SD, Braam J (2002) Transcriptional and posttranscriptional regulation of Arabidopsis TCH4 expression by diverse stimuli. Roles of cis regions and brassinosteroids. Plant Physiol 130:770–783

    Article  PubMed  Google Scholar 

  • Imoto K, Yokoyama R, Nishitani K (2005) Comprehensive approach to genes involved in cell wall modifications in Arabidopsis thaliana. Plant Mol Biol 58:177–192

    Article  CAS  PubMed  Google Scholar 

  • Jaffe MJ (1973) Thigmomorphogenesis: the response of plant growth and development to mechanical stimulation. Planta 114:143–157

    Article  Google Scholar 

  • Jaffe MJ, Forbes S (1993) Thigmomorphogenesis: the effect of mechanical perturbation on plants. Plant Growth Regul 12:313–324

    Article  CAS  PubMed  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions, β-glucuronidase as a sensitive and versatile gene fusion maker in higher plants. EMBO J 6:3901–3907

    CAS  PubMed  Google Scholar 

  • Kagaya Y, Ohmiya K, Hattori T (1999) RAV1, a novel DNA-binding protein, binds to bipartite recognition sequence through two distinct DNA-binding domains uniquely found in higher plants. Nucleic Acids Res 27:470–478

    Article  CAS  PubMed  Google Scholar 

  • Kanzaki M, Nagasawa M, Kojima I, Sato C, Naruse K, Sokabe M, Iida H (1999) Molecular identification of a eukaryotic, stretch-activated nonselective cation channel. Science 285:882–886

    Article  CAS  PubMed  Google Scholar 

  • Ko J-H, Han K-H, Park S, Yang J (2004) Plant body weight-induced secondary growth in Arabidopsis and its transcription phenotype revealed by whole-transcriptome profiling. Plant Physiol 135:1069–1083

    Article  CAS  PubMed  Google Scholar 

  • Ko J-H, Yang SH, Park AH, Lerouxel O, Han K-H (2007) ANAC012, a member of the plant-specific NAC transcription factor family, negatively regulates xylary fiber development in Arabidopsis thaliana. Plant J 50:1035–1048

    Article  CAS  PubMed  Google Scholar 

  • Kubo M, Udagawa M, Nishikubo N, Horiguchi G, Yamaguchi M, Ito J, Mimura T, Fukuda H, Demura T (2005) Transcription switches for protoxylem and metaxylem vessel formation. Genes Dev 19:1855–1860

    Article  CAS  PubMed  Google Scholar 

  • Le Gourrierec J, Li YF, Zhou DX (1999) Transcriptional activation by Arabidopsis GT-1 may be through interaction with TFIIA–TBP–TATA complex. Plant J 18:663–668

    Article  CAS  PubMed  Google Scholar 

  • Locke EG, Bonilla M, Liang L, Takita Y, Cunningham KW (2000) A homolog of voltage-gated Ca2+ channels stimulated by depletion of secretory Ca2+ in yeast. Mol Cell Biol 20:6686–6694

    Article  CAS  PubMed  Google Scholar 

  • Martzivanou M, Hampp R (2003) Hyper-gravity effects on the Arabidopsis transcriptome. Physiol Plant 118:221–231

    Article  CAS  PubMed  Google Scholar 

  • Matsui A, Yokoyama R, Seki M, Ito T, Shinozaki K, Takahashi T, Komeda Y, Nishitani K (2005) AtXTH27 plays an essential role in cell wall modification during the development of tracheary elements. Plant J 42:525–534

    Article  CAS  PubMed  Google Scholar 

  • Mitsuda N, Iwase A, Yamamoto H, Yoshida M, Seki M, Shinozaki K, Ohme-Takagi M (2007) NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis. Plant Cell 19:270–280

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nakagawa Y, Katagiri T, Shinozaki K, Qi Z, Tatsumi H, Furuichi T, Kishigami A, Sokabe M, Kojima I, Sato S, Kato T, Tabata S, Iida K, Terashima A, Nakano M, Ikeda M, Yamanaka T, Iida H (2007) Arabidopsis plasma membrane protein crucial for Ca2+ influx and touch sensing in roots. Proc Natl Acad Sci USA 104:3639–3644

    Article  CAS  PubMed  Google Scholar 

  • Nishitani K, Hoson T, Kamisaka S, Yamamoto R, Masuda Y, Yamashita M (1992) Effect of gravity on plant growth and cell wall properties. Proc Int Symp Space Technol Sci 8:2109–2114

    Google Scholar 

  • Palaniswamy SK, James S, Sun H, Lamb RS, Davuluri RV, Grotewold E (2006) AGRIS and AtRegNet. A platform to link cis-regulatory elements and transcription factors into regulatory networks. Plant Physiol 140:818–829

    Article  CAS  PubMed  Google Scholar 

  • Soga K, Wakabayashi K, Kamisaka S, Hoson T (2004) Graviperception in growth inhibition of plant shoots under hypergravity conditions produced by centrifugation is independent of that in gravitropism and may involve mechanoreceptors. Planta 218:1054–1061

    Article  CAS  PubMed  Google Scholar 

  • Szyjanowicz PMJ, McKinnon I, Taylor NG, Gardiner J, Jarvis MC, Turner SR (2004) The irregular xylem 2 mutant is an allele of korrigan that affects the secondary cell wall of Arabidopsis thaliana. Plant J 37:730–740

    Article  CAS  PubMed  Google Scholar 

  • Taylor NG, Scheible WR, Cutler S, Somerville CR, Turner SR (1999) The irregular xylem3 locus of Arabidopsis encodes a cellulose synthase required for secondary cell wall synthesis. Plant Cell 11:769–780

    Article  CAS  PubMed  Google Scholar 

  • Taylor NG, Howells RM, Huttly AK, Vickers K, Turner SR (2003) Interactions among three distinct CesA proteins essential for cellulose synthesis. Proc Natl Acad Sci USA 100:1450–1455

    Article  CAS  PubMed  Google Scholar 

  • Teakle GR, Manfield IW, Graham JF, Gilmartin PM (2002) Arabidopsis thaliana GATA factors: organisation, expression and DNA-binding characteristics. Plant Mol Biol 50:43–56

    Article  CAS  PubMed  Google Scholar 

  • Tsukaya H, Ohshima T, Naito S, Chino M, Komeda Y (1991) Sugar-dependent expression of the CHS-A gene for chalcone synthase from Petunia in transgenic Arabidopsis. Plant Physiol 97:1414–1421

    Article  CAS  PubMed  Google Scholar 

  • Waldron KW, Brett CT (1990) Effects of extreme acceleration on the germination, growth and cell wall composition of pea epicotyls. J Exp Bot 41:71–77

    Article  CAS  Google Scholar 

  • Wenzel CL, Hester Q, Mattsson J (2008) Identification of genes expressed in vascular tissues using NPA-induced vascular overgrowth in Arabidopsis. Plant Cell Physiol 49:457–468

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi M, Kubo M, Fukuda H, Demura T (2008) Vascular-related NAC-DOMAIN7 is involved in the differentiation of all types of xylem vessels in Arabidopsis roots and shoots. Plant J 55:652–664

    Article  CAS  PubMed  Google Scholar 

  • Yokoyama R, Nishitani K (2001) A comprehensive expression analysis of all members of a gene family encoding cell-wall enzymes allowed us to predict cis-regulatory regions involved in cell-wall construction in specific organs of Arabidopsis. Plant Cell Physiol 42:1025–1033

    Article  CAS  PubMed  Google Scholar 

  • Yokoyama R, Nishitani K (2006) Identification and characterization of Arabidopsis thaliana genes involved in xylem secondary cell walls. J Plant Res 119:189–194

    Article  CAS  PubMed  Google Scholar 

  • Yu D, Chen C, Chen Z (2001) Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression. Plant Cell 13:1527–1540

    Article  CAS  PubMed  Google Scholar 

  • Zeidler D, Zähringer UZ, Gerber I, Dubery I, Hartung T, Bors W, Hutzler P, Durner J (2004) Innate immunity in Arabidopsis thaliana: Lipopolysaccharides activate nitric oxide synthase (NOS) and induce defense genes. Proc Natl Acad Sci USA 101:15811–15816

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Avci U, Grant EH, Haigler CH, Beers EP (2008) XND1, a member of the NAC domain family in Arabidopsis thaliana, negatively regulates lignocellulose synthesis and programmed cell death in xylem. Plant J 53:425–436

    Article  CAS  PubMed  Google Scholar 

  • Zhong R, Kays SJ, Schroederb BP, Ye Z-H (2002) Mutation of a chitinase-like gene causes ectopic deposition of lignin, aberrant cell shapes, and overproduction of ethylene. Plant Cell 14:165–179

    Article  CAS  PubMed  Google Scholar 

  • Zhong R, Demura T, Ye ZH (2006) SND1, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers of Arabidopsis. Plant Cell 18:3158–3170

    Article  CAS  PubMed  Google Scholar 

  • Zhong R, Richardson EA, Ye Z-H (2007) Two NAC domain transcription factors, SND1 and NST1, function redundantly in regulation of secondary wall synthesis in fibers of Arabidopsis. Planta 225:1603–1611

    Article  CAS  PubMed  Google Scholar 

  • Zhong R, Lee C, Zhou J, McCarthy RL, Ye ZH (2008) A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis. Plant Cell 20:2763–2782

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ms. Kei Saito for her technical assistance in generating transgenic Arabidopsis lines. This work was supported by a grant-in-aid for Scientific Research on Priority Areas (19039003) to K.N. and by a grant-in-aid for Scientific Research (B) (19370014) to K.N. and (C) (19570030) to R.Y. from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiko Nishitani.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10265_2009_251_MOESM1_ESM.tif

Fig. S1. Promoter::GUS expression profiles of each of the 15 genes in Arabidopsis. The genes were categorized as in Fig. 1. The left side of each panel shows flowers of inflorescence stems that reached a length of 100 mm, while the right side shows the third or fourth leaf of a 2-week-old plant. Most genes were expressed in anthers and leaf vessels. Bar 1 mm (TIFF 6035 kb)

10265_2009_251_MOESM2_ESM.tif

Fig. S2. Effects of load application on promoter::GUS expression patterns for CesA7 (a, b) and CesA4 (c, d) genes. A 15 mg (a, c) or 50 mg (b, d) of half-folded aluminum foil weight was attached to the inflorescence stem as shown in Fig. 1d. After the plants were allowed to grow for 2 days, region I (Fig. 1d) of the inflorescence was cross-sectioned and subjected to GUS staining. No apparent change in the expression pattern of the two genes was observed. Bar 200 μm (TIFF 2720 kb)

10265_2009_251_MOESM3_ESM.tif

Fig. S3. Promoter::GUS expression patterns of CesA7 (ad) and CesA4 (eh) along the inflorescence stem, 50 mm (a, e), 100 mm (b, f), 150 mm (c, g) and 200 mm (d, h) below the apex. Note that each of the two genes exhibits similar tissue specific expression pattern among the four regions along developmental stages of the inflorescence stem. Bar 200 μm (TIFF 5045 kb)

10265_2009_251_MOESM4_ESM.tif

Fig. S4. Effects of load application on histological pattern of the inflorescence stem. A 50 mg (a) or 15 mg (b) of half-folded aluminum foil weight was attached as shown in Fig. 1d. After the plants were allowed to grow for 5 days, region I (Fig. 1d) of the inflorescence stem was cross-sectioned and subjected to staining with 2% phloroglucinol-HCl to visualize tissues with secondary wall deposition. Bar 200 μm (TIFF 1775 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koizumi, K., Yokoyama, R. & Nishitani, K. Mechanical load induces upregulation of transcripts for a set of genes implicated in secondary wall formation in the supporting tissue of Arabidopsis thaliana . J Plant Res 122, 651–659 (2009). https://doi.org/10.1007/s10265-009-0251-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-009-0251-7

Keywords

Navigation