Skip to main content
Log in

The mutants compacta ähnlich, Nitida and Grandiflora define developmental compartments and a compensation mechanism in floral development in Antirrhinum majus

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

In order to improve our understanding of floral size control we characterised three mutants of Antirrhinum majus with different macroscopic floral phenotypes. The recessive mutant compacta ähnlich has smaller flowers affected mainly in petal lobe expansion, the dominant mutant Grandiflora has overall larger organs, whilst the semidominant mutation Nitida exhibits smaller flowers in a dose-dependent manner. We developed a cell map in order to establish the cellular phenotypes of the mutants. Changes in organ size were both organ- and region-specific. Nitida and compacta ähnlich affected cell expansion in proximal and distal petal regions, respectively, suggesting differential regulation between petal lobe regions. Although petal size was smaller in compacta ähnlich than in wild type, conical cells were significantly bigger, suggesting a compensation mechanism involved in petal development. Grandiflora had larger cells in petals and increased cell division in stamens and styles, suggesting a relationship between genes controlling organ size and organ identity. The level of ploidy in petals of Grandiflora and coan was found to be equivalent to wild type petals and leaves, ruling out an excess of growth via endoreduplication. We discuss our results in terms of current models about control of lateral organ size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anastasiou E, Lenhard M (2007) Growing up to one’s standard. Curr Opin Plant Biol 10:63–69

    Article  PubMed  Google Scholar 

  • Anastasiou E, Kenz S, Gerstung M, MacLean D, Timmer J, Fleck C, Lenhard M (2007) Control of plant organ size by KLUH/CYP78A5-dependent intercellular signaling. Dev Cell 13:843–856

    Article  CAS  PubMed  Google Scholar 

  • Armbruster WS, Di Stilio V, Tuxill JD, Flores TC, Velasquez Runk JV (1999) Covariance and decoupling of covariance of floral and vegetative traits in nine neotropica plants: a reevaluation of Berg’s correlation-pleiades concept. Am J Bot 86:39–55

    Article  Google Scholar 

  • Bayo-Canha A, Delgado-Benarroch L, Weiss J, Egea-Cortines M (2007) Artificial decrease of leaf area affects inflorescence quality but not floral size in Antirrhinum majus. Sci Hortic 113:383–386

    Article  Google Scholar 

  • Beemster GT, Fiorani F, Inze D (2003) Cell cycle: the key to plant growth control? Trends Plant Sci 8:154–158

    Article  CAS  PubMed  Google Scholar 

  • Berg RL (1959) A general evolutionary principle underlying the origin of developmental homeostasis. Am Nat 93:103–105

    Article  Google Scholar 

  • Bradley D, Carpenter R, Sommer H, Hartley N, Coen E (1993) Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the plena locus of Antirrhinum. Cell 72:85–95

    Article  CAS  PubMed  Google Scholar 

  • Brewer PB, Howles PA, Dorian K, Griffith ME, Ishida T, Kaplan-Levy RN, Kilinc A, Smyth DR (2004) PETAL LOSS, a trihelix transcription factor gene, regulates perianth architecture in the Arabidopsis flower. Development 131:4035–4045

    Article  CAS  PubMed  Google Scholar 

  • Causier B, Cook H, Davies B (2003) An Antirrhinum ternary complex factor specifically interacts with C-function and SEPALLATA-like MADS-box factors. Plant Mol Biol 52:1051–1062

    Article  CAS  PubMed  Google Scholar 

  • Coen ES, Meyerowitz EM (1991) The war of the whorls—genetic interactions controlling flower development. Nature 353:31–37

    Article  CAS  PubMed  Google Scholar 

  • Comba L, Corbet SA, Hunt H, Outram S, Parker JS, Glover BJ (2000) The role of genes influencing the corolla in pollination of Antirrhinum majus. Plant Cell Environ 23:639–647

    Article  CAS  Google Scholar 

  • Davies B, Egea-Cortines M, de Andrade SE, Saedler H, Sommer H (1996) Multiple interactions amongst floral homeotic MADS box proteins. EMBO J 15:4330–4343

    CAS  PubMed  Google Scholar 

  • Delgado-Benarroch L, Causier B, Weiss J, Egea-Cortines M (2009) FORMOSA controls cell division and expansion during floral development in Antirrhinum majus. Planta (in press) doi:10.1007/s00425-009-0910-x

  • Disch S, Anastasiou E, Sharma VK, Laux T, Fletcher JC, Lenhard M (2006) The E3 ubiquitin ligase BIG BROTHER controls Arabidopsis organ size in a dosage-dependent manner. Curr Biol 16:272–279

    Article  CAS  PubMed  Google Scholar 

  • Dudareva N, Murfitt LM, Mann CJ, Gorenstein N, Kolosova N, Kish CM, Bonham C, Wood K (2000) Developmental regulation of methyl benzoate biosynthesis and emission in snapdragon flowers. Plant Cell 12:949–961

    Article  CAS  PubMed  Google Scholar 

  • Egea Gutierrez-Cortines M, Davies B (2000) Beyond the ABCs: ternary complex formation in the control of floral organ identity. Trends Plant Sci 5:473–478

    Google Scholar 

  • Egea-Cortines M, Saedler H, Sommer H (1999) Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus. EMBO J 18:5370–5379

    Article  CAS  PubMed  Google Scholar 

  • Ferjani A, Horiguchi G, Yano S, Tsukaya H (2007) Analysis of leaf development in fugu mutants of Arabidopsis reveals three compensation modes that modulate cell expansion in determinate organs. Plant Physiol 144:988–999

    Article  CAS  PubMed  Google Scholar 

  • Frary A, Fritz LA, Tanksley SD (2004) A comparative study of the genetic bases of natural variation in tomato leaf, sepal, and petal morphology. Theor Appl Genet 109:523–533

    Article  PubMed  Google Scholar 

  • Fujikura U, Horiguchi G, Tsukaya H (2007) Dissection of enhanced cell expansion processes in leaves triggered by a defect in cell proliferation, with reference to roles of endoreduplication. Plant Cell Physiol 48:278–286

    Article  CAS  PubMed  Google Scholar 

  • Galliot C, Hoballah ME, Kuhlemeier C, Stuurman J (2006a) Genetics of flower size and nectar volume in Petunia pollination syndromes. Planta 225:203–212

    Article  CAS  PubMed  Google Scholar 

  • Galliot C, Stuurman J, Kuhlemeier C (2006b) The genetic dissection of floral pollination syndromes. Curr Opin Plant Biol 9:78–82

    Article  CAS  PubMed  Google Scholar 

  • Gaudin V, Lunness PA, Fobert PR, Towers M, Riou-Khamlichi C, Murray JA, Coen E, Doonan JH (2000) The expression of D-cyclin genes defines distinct developmental zones in snapdragon apical meristems and is locally regulated by the Cycloidea gene. Plant Physiol 122:1137–1148

    Article  CAS  PubMed  Google Scholar 

  • Gendreau E, Traas J, Desnos T, Grandjean O, Caboche M, Hofte H (1997) Cellular basis of hypocotyl growth in Arabidopsis thaliana. Plant Physiol 114:295–305

    Article  CAS  PubMed  Google Scholar 

  • Grafi G, Larkins BA (1995) Endoreduplication in maize endosperm: involvement of M phase-promoting factor inhibition and induction of S phase-related kinases. Science 269:1262–1264

    Article  CAS  PubMed  Google Scholar 

  • Griffith ME, Conceicao AD, Smyth DR (1999) PETAL LOSS gene regulates initiation and orientation of second whorl organs in the Arabidopsis flower. Development 126:5635–5644

    CAS  PubMed  Google Scholar 

  • Gutierrez C, Ramirez-Parra E, Castellano MM, del Pozo JC (2002) G(1) to S transition: more than a cell cycle engine switch. Curr Opin Plant Biol 5:480–486

    Article  CAS  PubMed  Google Scholar 

  • Honma T, Goto K (2001) Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409:525–529

    Article  CAS  PubMed  Google Scholar 

  • Horiguchi G, Tsukaya H (2007) Effect of mutations that stimulate cell proliferation on compensated cell enlargement induced by the angustifolia3 mutation. Plant Cell Physiol 48:S54–S54

    Google Scholar 

  • Horiguchi G, Kim GT, Tsukaya H (2005) The transcription factor AtGRF5 and the transcription coactivator AN3 regulate cell proliferation in leaf primordia of Arabidopsis thaliana. Plant J 43:68–78

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Xie Q, Chua NH (2003) The Arabidopsis auxin-inducible gene ARGOS controls lateral organ size. Plant Cell 15:1951–1961

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Poh HM, Chua NH (2006) The Arabidopsis ARGOS-LIKE gene regulates cell expansion during organ growth. Plant J 47:1–9

    Article  CAS  PubMed  Google Scholar 

  • Juenger T, Perez-Perez JM, Bernal S, Micol JL (2005) Quantitative trait loci mapping of floral and leaf morphology traits in Arabidopsis thaliana: evidence for modular genetic architecture. Evol Dev 7:259–271

    Article  CAS  PubMed  Google Scholar 

  • Kim GT, Tsukaya H, Uchimiya H (1998) The ROTUNDIFOLIA3 gene of Arabidopsis thaliana encodes a new member of the cytochrome P-450 family that is required for the regulated polar elongation of leaf cells. Genes Dev 12:2381–2391

    Article  CAS  PubMed  Google Scholar 

  • Kim GT, Fujioka S, Kozuka T, Tax FE, Takatsuto S, Yoshida S, Tsukaya H (2005) CYP90C1 and CYP90D1 are involved in different steps in the brassinosteroid biosynthesis pathway in Arabidopsis thaliana. Plant J 41:710–721

    Article  CAS  PubMed  Google Scholar 

  • Kolosova N, Sherman D, Karlson D, Dudareva N (2001) Cellular and subcellular localization of S-adenosyl-l-methionine: benzoic acid carboxyl methyltransferase, the enzyme responsible for biosynthesis of the volatile ester methylbenzoate in snapdragon flowers. Plant Physiol 126:956–964

    Article  CAS  PubMed  Google Scholar 

  • Kondorosi E, Roudier F, Gendreau E (2000) Plant cell-size control: growing by ploidy? Curr Opin Plant Biol 3:488–492

    Article  CAS  PubMed  Google Scholar 

  • Kotilainen M, Helariutta Y, Mehto M, Pollanen E, Albert VA, Elomaa P, Teeri TH (1999) GEG participates in the regulation of cell and organ shape during corolla and carpel development in Gerbera hybrida. Plant Cell 11:1093–1104

    Article  CAS  PubMed  Google Scholar 

  • Krizek BA (1999) Ectopic expression of AINTEGUMENTA in Arabidopsis plants results in increased growth of floral organs. Dev Genet 25:224–236

    Article  CAS  PubMed  Google Scholar 

  • Krizek BA (2009) Making bigger plants: key regulators of final organ size. Curr Opin Plant Biol 12:17–22

    Article  CAS  PubMed  Google Scholar 

  • Kudo N, Kimura Y (2001) Flow cytometric evidence for endopolyploidization in cabbage (Brassica oleracea L.) flowers. Sex Plant Reprod 13:279–283

    Article  Google Scholar 

  • Laitinen RAE, Pollanen E, Teeri TH, Elomaa P, Kotilainen M (2007) Transcriptional analysis of petal organogenesis in Gerbera hybrida. Planta 226:347–360

    Article  CAS  PubMed  Google Scholar 

  • Martin C, Gerats T (1993) Control of pigment biosynthesis genes during petal development. Plant Cell 5:1253–1264

    Article  CAS  PubMed  Google Scholar 

  • Martin C, Bhatt K, Baumann K, Jin H, Zachgo S, Roberts K, Schwarz-Sommer Z, Glover B, Perez-Rodrigues M (2002) The mechanics of cell fate determination in petals. Phil Trans R Soc Lond Ser B Biol Sci 357:809–813

    Article  CAS  Google Scholar 

  • Mizukami Y, Fischer RL (2000) Plant organ size control: AINTEGUMENTA regulates growth and cell numbers during organogenesis. Proc Natl Acad Sci USA 97:942–947

    Article  CAS  PubMed  Google Scholar 

  • Noda K, Glover BJ, Linstead P, Martin C (1994) Flower color intensity depends on specialized cell-shape controlled by a Myb-related transcription factor. Nature 369:661–664

    Article  CAS  PubMed  Google Scholar 

  • Perez-Rodriguez M, Jaffe FW, Butelli E, Glover BJ, Martin C (2005) Development of three different cell types is associated with the activity of a specific MYB transcription factor in the ventral petal of Antirrhinum majus flowers. Development 132:359–370

    Article  CAS  PubMed  Google Scholar 

  • Reale L, Porceddu A, Lanfaloni L, Moretti C, Zenoni S, Pezzotti M, Romano B, Ferranti F (2002) Patterns of cell division and expansion in developing petals of Petunia hybrida. Sex Plant Reprod 15:123–132

    Article  Google Scholar 

  • Rijpkema A, Gerats T, Vandenbussche M (2006) Genetics of floral development in Petunia. Adv Bot Res Inc Adv Plant Pathol 44(44):237–278

    CAS  Google Scholar 

  • Schwarz-Sommer Z, Huijser P, Nacken W, Saedler H, Sommer H (1990) Genetic-control of flower development by homeotic genes in Antirrhinum majus. Science 250:931–936

    Article  CAS  PubMed  Google Scholar 

  • Schwarz-Sommer Z, Hue I, Huijser P, Flor PJ, Hansen R, Tetens F, Lonnig WE, Saedler H, Sommer H (1992) Characterization of the Antirrhinum floral homeotic MADS-box gene deficiens: evidence for DNA binding and autoregulation of its persistent expression throughout flower development. EMBO J 11:251–263

    CAS  PubMed  Google Scholar 

  • Sommer H, Saedler H (1986) Structure of the chalcone synthase gene of Antirrhinum majus. Mol Gen Genet 202:429–434

    Article  CAS  Google Scholar 

  • Sommer H, Beltran JP, Huijser P, Pape H, Lonnig WE, Saedler H, Schwarzsommer Z (1990) Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus—the protein shows homology to transcription factors. EMBO J 9:605–613

    CAS  PubMed  Google Scholar 

  • Stubbe H (1966) Genetik und Zytologie von Antirrhinum L. sect. Antirrhinum. Fischer, Jena

    Google Scholar 

  • Stubbe H (1974) New mutants of Antirrhinum majus. Kulturpflanze 22:189–213

    Article  Google Scholar 

  • Szecsi J, Joly C, Bordji K, Varaud E, Cock JM, Dumas C, Bendahmane M (2006) BIGPETALp, a bHLH transcription factor is involved in the control of Arabidopsis petal size. EMBO J 25:3912–3920

    Article  CAS  PubMed  Google Scholar 

  • Takeda S, Matsumoto N, Okada K (2004) RABBIT EARS, encoding a SUPERMAN-like zinc finger protein, regulates petal development in Arabidopsis thaliana. Development 131:425–434

    Article  CAS  PubMed  Google Scholar 

  • Teitel DC, Arad SM, Birnbaum E, Mizrahi Y (1985) Growth and development of tomato fruits in vivo and in vitro. Plant Growth Regul 3:179–189

    Article  CAS  Google Scholar 

  • Thompson DM (1988) Systematics of Antirrhinum (Scrophulariaceae) in the New-World. American Society of Plant Taxonomists. Ann Arbor, MI

  • Trobner W, Ramirez L, Motte P, Hue I, Huijser P, Lonnig WE, Saedler H, Sommer H, Schwarz-Sommer Z (1992) GLOBOSA: a homeotic gene which interacts with DEFICIENS in the control of Antirrhinum floral organogenesis. EMBO J 11:4693–4704

    CAS  PubMed  Google Scholar 

  • Truernit E, Haseloff J (2008) Arabidopsis thaliana outer ovule integument morphogenesis: ectopic expression of KNAT1 reveals a compensation mechanism. BMC Plant Biol 8:35

    Article  PubMed  Google Scholar 

  • Tsukaya H (2002) Interpretation of mutants in leaf morphology: genetic evidence for a compensatory system in leaf morphogenesis that provides a new link between cell and organismal theories. Int Rev Cytol A Surv Cell Biol 217:1–39

    Article  CAS  Google Scholar 

  • Tsukaya H (2005) Leaf shape: genetic controls and environmental factors. Int J Dev Biol 49:547–555

    Article  PubMed  Google Scholar 

  • Tsukaya H (2008) Controlling size in multicellular organs: focus on the leaf. Plos Biol 6:e174

    Article  PubMed  Google Scholar 

  • Weiss J, Delgado-Benarroch L, Egea-Cortines M (2005) Genetic control of floral size and proportions. Int J Dev Biol 49:513–525

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work on A. majus in our laboratory has been funded by Fundación Séneca de la Región de Murcia, BIOCARM and Ministerio de Educación y Ciencia AGL2007-61384. L. D-B was granted by AECI. Thanks to Perla Gómez, Izaskun Mallona and María Manchado-Rojo for comments on the manuscript. We would also like to thank two anonymous reviewers for their comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Egea-Cortines.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delgado-Benarroch, L., Weiss, J. & Egea-Cortines, M. The mutants compacta ähnlich, Nitida and Grandiflora define developmental compartments and a compensation mechanism in floral development in Antirrhinum majus . J Plant Res 122, 559–569 (2009). https://doi.org/10.1007/s10265-009-0236-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-009-0236-6

Keywords

Navigation