Skip to main content
Log in

Genetic structure of Cerasus jamasakura, a Japanese flowering cherry, revealed by nuclear SSRs: implications for conservation

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

The genetic resources of a particular species of flowering cherry, Cerasus jamasakura, have high conservation priority because of its cultural, ecological and economic value in Japan. Therefore, the genetic structures of 12 natural populations of C. jamasakura were assessed using ten nuclear SSR loci. The population differentiation was relatively low (F ST, 0.043), reflecting long-distance dispersal of seeds by animals and historical human activities. However, a neighbor-joining tree derived from the acquired data, spatial analysis of molecular variance and STRUCTURE analysis revealed that the populations could be divided into two groups: one located on Kyusyu Island and one on Honshu Island. Genetic diversity parameters such as allelic richness and gene diversity were significantly lower in the Kyushu group than the Honshu group. Furthermore, STRUCTURE analysis revealed that the two lineages were admixed in the western part of Honshu Island. Thus, although the phylogeographical structure of the species and hybridization dynamics among related species need to be evaluated in detail using several marker systems, the Kyusyu Island and Honshu Island populations should be considered as different conservation units, and the islands should be regarded as distinct seed transfer zones for C. jamasakura, especially when rapid assessments are required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Coart E, Glabeke SV, Petit RJ, Bockstaele EV, Roldán-Ruiz I (2005) Range wide versus local patterns of genetic diversity in hornbeam (Carpinus betulus L.). Conserv Genet 6:259–273

    Article  CAS  Google Scholar 

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    PubMed  CAS  Google Scholar 

  • Crandall KA, Bininda-Emonds ORP, Mace GM, Wayne RK (2000) Considering evolutionary processes in conservation biology. Trends Ecol Evol 15:290–295

    Article  PubMed  Google Scholar 

  • Dirlewanger E, Cosson P, Tavaud M, Aranzana M, Poizat C, Zanetto A, Arús P, Laigret F (2002) Development of microsatellite markers in peach (Prunus persica (L.) Batsch) and their use in genetic diversity analysis in peach and sweet cherry (Prunus avium L.). Theor Appl Genet 105:127–138

    Article  PubMed  CAS  Google Scholar 

  • Dupanloup I, Schneider S, Excoffier L (2002) A simulated annealing approach of define the genetic structure of populations. Mol Ecol 11:2571–2581

    Article  PubMed  CAS  Google Scholar 

  • El Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree (Argania spinosa (L.) Skeels) endemic to Morocco. Theor Appl Genet 92:832–839

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distance among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    PubMed  CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1687

    PubMed  CAS  Google Scholar 

  • Fineschi S, Taurchini D, Villani F, Vendramin GG (2000) Chloroplast DNA polymorphism reveals little geographical structure in Castanea sativa Mill. (Fagaceae) throughout southern European countries. Mol Ecol 9:1495–1503

    Article  PubMed  CAS  Google Scholar 

  • Frankel OH (1974) Genetic conservation: our evolutionary responsibility. Genetics 78:53–65

    PubMed  Google Scholar 

  • Frascaria N, Santi F, Gouyon PH (1993) Genetic differentiation within and among populations of chestnut (Castanea sativa Mill.) and wild cherry (Prunus avium L.). Heredity 70:634–641

    Article  Google Scholar 

  • Godoy JA, Jordano P (2001) Seed dispersal by animals: exact identification of source trees with endocarp DNA microsatellites. Mol Ecol 10:2275–2283

    Article  PubMed  CAS  Google Scholar 

  • Goudet J (2001) FSTAT; a program to estimate and test gene diversities and fixation indices version 2.9.3. http://www.unil.ch/izea/softwares/fstat.html

  • Goudet J, Raymond M, de Meeus T, Rousset F (1996) Testing differentiation in diploid populations. Genetics 144:1933–1940

    PubMed  CAS  Google Scholar 

  • Hewitt GM (1999) Post-glacial re-colonization of European biota. Biol J Linn Soc 68:87–112

    Article  Google Scholar 

  • Hufford KM, Mazer SJ (2003) Plant ecotypes: genetic differentiation in the age of ecological restoration. Trend Ecol Evol 18:147–155

    Article  Google Scholar 

  • Kato S, Mukai Y (2004) Allelic diversity of S-RNase at the selfincompatibility locus in natural flowering cherry populations (Prunus lannesiana var. speciosa). Heredity 92:249–256

    Article  PubMed  CAS  Google Scholar 

  • Katsuki T (2001) Flowering cherries in Japan (in Japanese). Gakken, Tokyo

    Google Scholar 

  • Kuitert W (1999) Japanese flowering cherries. Timber, Portland

    Google Scholar 

  • Langella O (2007) Populations 1.2.30: population genetic software (individuals or populations distances, phylogenetic trees). France. http://bioinformatics.org/~tryphon/populations/

  • Lefèvre F (2004) Human impacts on forest genetic resources in the temperate zone: an updated review. For Ecol Manage 197:257–271

    Article  Google Scholar 

  • Magri D, Vendramin GG, Comps B, Dupanloup I, Geburek T, Gömöry D, Latałowa M, Litt T, Paule L, Roure JM, Tantau I, van der Knaap WO, Petit RJ, de Beaulieu JL (2006) A new scenario for the Quaternary history of European beech populations: palaeobotanical evidence and genetic consequences. New Phytol 171:199–221

    Article  PubMed  CAS  Google Scholar 

  • Magri D, Fineschi S, Bellarosa R, Buonamici A, Sebastiani F, Schirone B, Simeone MC, Vendramin GG (2007) The distribution of Quercus suber chloroplast haplotypes matches the palaeogeographical history of the western Mediterranean. Mol Ecol 16:5259–5266

    Article  PubMed  CAS  Google Scholar 

  • Marriette S, Lefranc M, Legrand P, Taneyhill D, Frascaria-Lacoste N, Machon N (1997) Genetic variability in wild cherry populations in France. Effects of colonizing processes. Theor Appl Genet 94:904–908

    Article  Google Scholar 

  • McKay JK, Christian CE, Harrison S, Rice KJ (2005) How local is local?––a review of practical and conceptual issues in the genetics of restoration. Restor Ecol 13:432–440

    Article  Google Scholar 

  • Mohanty A, Martín JP, Aguinagalde I (2001) A population genetic analysis of chloroplast DNA in wild populations of Prunus avium L. in Europe. Heredity 87:421–427

    Article  PubMed  CAS  Google Scholar 

  • Moritz C (1994) Defining ‘evolutionary significant units’ for conservation. Trend Ecol Evol 9:373–375

    Article  Google Scholar 

  • Moritz C (2002) Strategies to protect biological diversity and the evolutionary process that sustain it. Syst Biol 51:238–254

    Article  PubMed  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenic trees from molecular data. J Mol Evol 19:153–170

    Article  PubMed  CAS  Google Scholar 

  • Ogawa K (1993) Flowering cherries (in Japanese). Shincho-Shoseki, Tokyo

    Google Scholar 

  • Ohba H (1992) Japanese cherry trees under the genus Cerasus (Rosaceae). J Jpn Bot 67:276–281

    Google Scholar 

  • Ohba H (2001) Flora of Japan. In: Iwatsuki K, Boufford DE, Ohba H (eds) Angiospermae, Dicotyledoneae, Archichlamydeae (b), vol IIb. Koudansha, Tokyo

  • Ohta S, Yamamoto T, Nishitani C, Katsuki T, Iketani H, Omura M (2007) Phylogenetic relationships among Japanese flowering cherries (Prunus subgenus Cerasus) based on nucleotide sequences of chloroplast DNA. Plant Syst Evol 263:209–225

    Article  CAS  Google Scholar 

  • Peakall R, Smouse PE (2005) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Pearse DE, Crandall KA (2004) Beyond F ST: analysis of population genetic data for conservation. Conserv Genet 5:585–602

    Article  CAS  Google Scholar 

  • Piry S, Luikart G, Cornuet JM (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90:502–503

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Pritchard JK, Wen W, Falush D (2007) STRUCTURE ver.2.2. University of Chicago, Chicago. http://pritch.bsd.uchicago.edu/

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228

    PubMed  CAS  Google Scholar 

  • Soons MB, Ozinga WA (2005) How important is long-distance seed dispersal for the regional survival of plant species? Divers Distrib 11:165–172

    Article  Google Scholar 

  • Suzuki M (2002) Japanese and culture of trees (in Japanese). Yasaka-Shobo, Tokyo

    Google Scholar 

  • Taberlet P, Fumagalli L, Wust-Saucy AG, Cosson J-F (1998) Comparative phylogeography and postglacial colonization route in Europe. Mol Ecol 7:453–464

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi K, Brown RD, Washitani I, Tsunekawa A, Yokohari M (2003) Satoyama: the traditional rural landscape of Japan. Springer, Tokyo

    Google Scholar 

  • Takeuchi M, Tamura M, Iijima K (2005) Organisms on cherry trees (in Japanese). Tokyo University of Agriculture Press, Tokyo

    Google Scholar 

  • Testolin R, Marrazo T, Cipriani G, Quarta R, Verde I, Dettori MT, Pancaldi M, Sansavini S (2000) Microsatellite DNA in peach(Prunus persica L. Batsch) and its use in fingerprinting and testing the genetic origin of cultivars. Genome 43:512–520

    Article  PubMed  CAS  Google Scholar 

  • Tomaru N, Mitsutsuji T, Takahashi M, Tsumura Y, Uchida K, Ohba K (1997) Genetic diversity in Fagus crenata (Japanese beech): influence of the distributional shift during the Late-Quaternary. Heredity 78:241–251

    Article  Google Scholar 

  • Tsuda Y, Ide Y (2005) Wide-range analysis of genetic structure of Betula maximowicziana, a long-lived pioneer tree species and noble hardwood in the cool temperate zone of Japan. Mol Ecol 14:3929–3941

    Article  PubMed  CAS  Google Scholar 

  • Tsuda Y, Goto S, Ide Y (2004) RAPD analysis of genetic variation within and among four natural populations of Betula maximowicziana. Silvae Genet 53:234–239

    Google Scholar 

  • Wagner DB, Furnier GR, Saghai MA, Williams SM, Dancik BP, Allard RW (1987) Chloroplast DNA polymorphism in lodgepole and jack pines and their hybrids. Proc Natl Acad Sci USA 84:2097–2100

    Article  PubMed  CAS  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating f-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Whittaker RJ, Araújo MB, Jepson P, Ladle RJ, Watson JE, Willis KJ (2005) Conservation biogeography: assessment and prospect. Divers Distrib 11:3–23

    Article  Google Scholar 

  • Wright S (1943) Isolation by distance. Genetics 28:114–138

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Chikako Fuchimoto, Reiko Mizusawa, Saneyoshi Ueno, So Hanaoka, Yasuomi Ohta and Yasuko Hakamada for their help in sampling the plant material. This research was supported by a grant for “Research on Genetic Guidelines for Restoration Programs using Genetic Diversity Information” from the Ministry of Environment, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiaki Tsuda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsuda, Y., Kimura, M., Kato, S. et al. Genetic structure of Cerasus jamasakura, a Japanese flowering cherry, revealed by nuclear SSRs: implications for conservation. J Plant Res 122, 367–375 (2009). https://doi.org/10.1007/s10265-009-0224-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-009-0224-x

Keywords

Navigation