Skip to main content
Log in

Microtubules in early development of the megagametophyte of Ginkgo biloba

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Food storage tissue in the seeds of gymnosperms is female gametophyte (megagametophyte) that develops before fertilization, whereas, in seeds of angiosperms, food is stored as endosperm initiated by double fertilization. The megagametophyte is haploid, and endosperm is usually triploid, at least initially. Despite differences in origin, ploidy level, and developmental trigger, the early events of female gametophyte development in ginkgo are very similar to nuclear endosperm development in the seeds of angiosperms. In both, development begins as a single cell that undergoes multiple mitoses without cytokinesis, to produce a large syncytium. This study provided evidence that microtubule involvement in organization of the syncytium into nuclear cytoplasmic domains (NCDs) via nuclear-based radial microtubule systems is a critical developmental feature in the ginkgo megagametophyte, as it is in endosperm. Once the initial anticlinal walls have been deposited at the boundaries of NCDs, cellularization proceeds by the process of alveolation. Continued unidirectional growth of the alveolar walls is an outstanding example of polar cytokinesis. Ginkgo megagametophyte development appears to occur uniformly throughout the entire chamber, whereas nuclear type endosperm usually exhibits distinct developmental domains. These observations suggest that there is a fundamental pathway for the development and cellularization of syncytia in seed development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figs. 1–4
Figs. 5–7
Figs. 8–12
Figs. 13–15
Figs. 16–20
Fig. 21
Figs. 22–24

Similar content being viewed by others

References

  • Bierhorst DW (1971) Morphology of vascular plants. MacMillan, New York

    Google Scholar 

  • Boisnard-Lorig C, Colon-Carmona A, Bauch M, Hodge S, Doerner P, Bancharel E, Dumas C, Haseloff J, Berger F (2001) Dynamic analyses of the expression of the histone: YFP fusion protein in Arabidopsis show that syncytial endosperm is divided in mitotic domains. Plant Cell 13:495–509

    Article  PubMed  CAS  Google Scholar 

  • Brown RC, Lemmon BE (1992) Cytoplasmic domain: a model for spatial control of cytokinesis in reproductive cells of plants. Electron Microsc Soc Am Bull 22:48–53

    Google Scholar 

  • Brown RC, Lemmon BE (1995) Methods in plant immunolight microscopy. Methods Cell Biol 49:85–107

    Article  PubMed  CAS  Google Scholar 

  • Brown RC, Lemmon BE (2001) The cytoskeleton and spatial control of cytokinesis in the plant life cycle. Protoplasma 215:35–49

    Article  PubMed  CAS  Google Scholar 

  • Brown RC, Lemmon BE (2007) The developmental biology of cereal endosperm. Plant Cell Monogr 8:1–20

    Article  Google Scholar 

  • Brown RC, Lemmon BE, Olsen O-A (1994) Endosperm development in barley: microtubule involvement in the morphogenetic pathway. Plant Cell 6:1241–1252

    Article  PubMed  Google Scholar 

  • Brown RC, Lemmon BE, Olsen O-A (1996) Development of the endosperm in rice (Oryza sativa L.): cellularization. J Plant Res 109:301–313

    Article  Google Scholar 

  • Brown RC, Lemmon B, Nguyen H (2002) The microtubule cycle during successive mitotic waves in the syncytial female gametophyte of ginkgo. J Plant Res 115:491–494

    Article  PubMed  Google Scholar 

  • Brown RC, Lemmon B, Nguyen H (2003) Events during the first four rounds of mitosis establish three developmental domains in the syncytial endosperm of Arabidopsis. Protoplasma 222:167–174

    Article  PubMed  CAS  Google Scholar 

  • Brown RC, Lemmon B, Nguyen H (2004) Comparative anatomy of the chalazal endosperm cyst in seeds of the Brassicaceae. Bot J Linnean Soc 144:375–394

    Article  Google Scholar 

  • Chaw S-M, Parkinson CL, Cheng Y, Vincent TM, Palmer JD (2000) Seed plant phylogeny inferred from all three plant genomes: monophyly of extant gymnosperms and origin of Gnetales from conifers. Proc Natl Acad Sci U S A 97:4086–4091

    Article  PubMed  CAS  Google Scholar 

  • Cutler SR, Ehrhardt DW (2002) Polarized cytokinesis in vacuolated cells of Arabidopsis. Proc Natl Acad Sci U S A 99:2812–2817

    Article  PubMed  CAS  Google Scholar 

  • Davis RW, Smith JD, Cobb BG (1990) A light and electron microscope investigation of the transfer cell region of maize caryopses. Can J Bot 68:471–479

    Article  Google Scholar 

  • Favre-Duchartre M (1956) Contribution à l’étude de la reproduction chez le Ginkgo biloba. Rev Cytol Biol Veg 17:1–218

    Google Scholar 

  • Floyd SK, Friedman WE (2000) Evolution of endosperm developmental patterns among basal flowering plants. Int J Plant Sci 161:S57–S81

    Article  Google Scholar 

  • Fox LM (1997) Microscopy 101. Polychrome stain for epoxy sections. Microsc Today 97:21

    Google Scholar 

  • Friedman WE, Floyd SK (2001) Perspective: the origin of flowering plants and their reproductive biology—a tale of two phylogenies. Evolution 55:217–231

    PubMed  CAS  Google Scholar 

  • Gifford EM, Foster AS (1988) Morphology and evolution of vascular plants. Freeman, New York

    Google Scholar 

  • Grossniklaus U, Vielle-Calzada J-P, Hoeppner MA, Gagliano WB (1998) Maternal control of embryogenesis by MEDEA, a polycomb-group gene in Arabidopsis. Science 280:446–450

    Article  PubMed  CAS  Google Scholar 

  • Kiyosue T, Ohad N, Yadegari R, Hannon M, Dinneny J, Wells D, Katz A, Margossian L, Harada J, Goldberg RB, Fischer RL (1999) Control of fertilization-independent endosperm development by the MEDEA polycomb gene in Arabidopsis. Proc Natl Acad Sci U S A 96:4186–4191

    Article  PubMed  CAS  Google Scholar 

  • Linnestad C, Doan DNP, Brown RC, Lemmon BE, Meyer DJ, Jung R, Olsen O-A (1998) Nucellain, a barley homolog of the dicot vacuolar-processing protease, is localized in nucellar cell walls. Plant Physiol 118:1169–1180

    Article  PubMed  CAS  Google Scholar 

  • Luo M, Bilodeau P, Dennis ES, Peacock WJ, Chaudhury A (2000) Expression and parent-of-origin effects for FIS2, MEA and FIE in the endosperm and embryo of developing Arabidopsis seeds. Proc Natl Acad Sci U S A 97:10637–10642

    Article  PubMed  CAS  Google Scholar 

  • Maheshwari P (1950) An introduction to the embryology of angiosperms. McGraw-Hill, New York

    Google Scholar 

  • Nguyen H, Brown RC, Lemmon BE (2000) The specialized chalazal endosperm in Arabidopsis thaliana and Lepidium virginicum (Brassicaceae). Protoplasma 212:99–110

    Article  Google Scholar 

  • Nguyen H, Brown RC, Lemmon BE (2001) Patterns of cytoskeletal organization reflect distinct developmental domains in endosperm of Coronopus didymus (Brassicaceae). Int J Plant Sci 162:1–14

    Article  Google Scholar 

  • Nguyen H, Brown RC, Lemmon BE (2002) Cytoskeletal organization of the micropylar endosperm in Coronopus didymus L. (Brassicaceae). Protoplasma 219:210–220

    Article  PubMed  CAS  Google Scholar 

  • Norstog KJ, Nichols TJ (1997) The biology of the cycads. Cornell University Press, New York

    Google Scholar 

  • Ohad N, Yadegari R, Margossian L, Hannon M, Michaeli D, Harada JJ, Goldberg RB, Fischer RL (1999) Mutations in FIE, a WD polycomb group gene, allow endosperm development without fertilization. Plant Cell 11:407–415

    Article  PubMed  CAS  Google Scholar 

  • Olsen O-A, Brown RC, Lemmon BE (1995) Pattern and process of wall formation in developing endosperm. Bioessays 17:803–812

    Article  Google Scholar 

  • Otegui M, Staehelin LA (2000) Syncytial-type cell plates: a novel kind of cell plate involved in endosperm cellularization of Arabidopsis. Plant Cell 12:933–947

    Article  PubMed  CAS  Google Scholar 

  • Schel JHN, Kieft H, van Lammeren AAM (1984) Interactions between embryo and endosperm during early developmental stages of maize caryopses (Zea mays). Can J Bot 62:2842–2853

    Article  Google Scholar 

  • Wang HL, Offler CE, Patrick JW (1994) Nucellar projection transfer cells in the developing wheat grain. Protoplasma 182:39–52

    Article  Google Scholar 

  • Warn RM (1986) The cytoskeleton of the early Drosophila embryo. J Cell Sci Suppl 5:311–328

    PubMed  CAS  Google Scholar 

  • Webb MC, Gunning BES (1991) The microtubular cytoskeleton during development of the zygote, proembryo and free-nuclear endosperm in Arabidopsis thaliana (L.) Heynh. Planta 184:187–195

    Article  Google Scholar 

  • Williams JH, Friedman WE (2002) Identification of diploid endosperm in an early angiosperm lineage. Nature 415:522–526

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Professor W. E. Friedman for valuable discussions and for contributing the original micrograph for Fig. 2 and Dr. H. Nguyen for valuable technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roy C. Brown.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, R.C., Lemmon, B.E. Microtubules in early development of the megagametophyte of Ginkgo biloba . J Plant Res 121, 397–406 (2008). https://doi.org/10.1007/s10265-008-0161-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-008-0161-0

Keywords

Navigation