Skip to main content
Log in

Molecular chaperone activity of tomato (Lycopersicon esculentum) endoplasmic reticulum-located small heat shock protein

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

The gene encoding the small heat shock protein (sHSP), LeHSP21.5, has been previously cloned from tomato (GenBank accession no. AB026983). The deduced amino acid sequence of this tomato sHSP was most similar to that of other endoplasmic reticulum (ER)-localized sHSPs (ER-sHSP) and can be predicted to target the ER. We examined whether the gene product of LeHSP21.5 (probable ER-sHSP) can act as molecular chaperone. For functional analysis, LeHSP21.5 protein was expressed in Escherichia coli as His6-tagged protein in the C-terminal and purified. We confirmed that ER-sHSP could provide thermal protection of soluble proteins in vitro. We compared the thermal stability of E. coli strain BL21 (DE3) transformed with pET-ER-sHSP with the control E. coli strain BL21(DE3) transformed with only the pET vector under heat shock and IPTG-induced conditions. Most of the protein extracts from E. coli cells expressing ER-sHSP were protected from heat-induced denaturation, whereas extracts from cells not expressing ER-sHSP were very heat-sensitive under these conditions. A similar protective effect was observed when purified ER-sHSP was added to an E. coli cell extract. ER-sHSP prevented the thermal aggregation and inactivation of citrate synthase. These collective findings indicate that ER-sHSP can function as a molecular chaperone in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CS:

citrate synthase

ER-sHSP:

endoplasmic reticulum-located small heat shock protein

HEPES:

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

IPTG:

isopropyl-1-thio-β-d-galacto-pyranoside

LDH:

lactate dehydrogenase

ME:

mercaptoethanol

PVPP:

Polyvinylpolypyrrolidone

sHSP(s):

small heat shock protein(s)

References

  • Arranco R, Almoguera C, Jordano J (1997) A plant small heat shock protein gene expressed during zygotic embryogenesis but non-inducible by heat stress. J Biol Chem 272:27470–27475

    Article  Google Scholar 

  • Arrigo AP, Landry J (1994) Expression and function of the low-molecular-weight heat shock proteins. In: Morimoto R, Tissieres A, Georgopoulus C (eds) The biology of heat shock proteins and molecular chaperones. Cold Spring Harbor Laboratory Press, New York, pp 335–373

    Google Scholar 

  • Atkinson BC, Raizada M, Bouchard RA, Frappier JRH, Walden DB (1993) The independent stage-specific expression of the 18-kDa heat shock protein genes during microsporogenesis in Zea Mays L. Dev Genet 14:15–26

    Article  PubMed  CAS  Google Scholar 

  • Boston RS, Viitanen PV, Vierling E (1996) Molecular chaperones and protein folding in plants. Plant Mol Biol 32:191–222

    Article  PubMed  CAS  Google Scholar 

  • Collada C, Gomez R, Casado R, Aragoncillo C (1997) Purification and in vitro chaperone activity of a class I small heat-shock protein abundant in recalcitrant chestnut seeds. Plant Physiol 115:71–77

    Article  PubMed  CAS  Google Scholar 

  • Cooper P, Ho THD (1987) Intracellular localization of heat shock proteins in maize. Plant Physiol 84:1197–1203

    Article  PubMed  CAS  Google Scholar 

  • Ehrnsperger M, Graber S, Gaestel M, Buchner J (1997) Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO J 16:221–229

    Article  PubMed  CAS  Google Scholar 

  • Forreiter C, Kirschner M, Nover L (1997) Stable transformation of an Arabidopsis cell suspension culture with firefly luciferase providing a cellular system for analysis of chaperone activity in vivo. Plant Cell 9:2171–2181

    Article  PubMed  CAS  Google Scholar 

  • Fujikawa S, Ukaji N, Yamane K, Nagao M, Takezawa D, Arakawa K (2006) Functional role of winter-accumulating proteins from mulberry tree in adaptation to winter-induced stresses. In: Chen T, Uemura M, Fujikawa S (eds) Cold hardiness in plants. Molecular genetics, cell biology and physiology. CABI Press, UK, pp 181–202

    Google Scholar 

  • Giese KC, Vierling E (2002) Changes in oligomerization are essential for the chaperone activity of a small heat shock protein in vivo and in vitro. J Biol Chem 277:46310–46318

    Article  PubMed  CAS  Google Scholar 

  • Helm KW, LaFayette PR, Nabao RT, Key JL, Vierling E (1993) Localization of small heat shock proteins to higher plant endomembrane system. Mol Cell Biol 13:238–247

    PubMed  CAS  Google Scholar 

  • Helm KW, Schmeits J, Vierling E (1995) An enomembrane-locatlized small heat-shock protein from Arabidopsis thaliana. Plant Physiol 107:287–288

    Article  PubMed  CAS  Google Scholar 

  • Joe MK, Park SM, Lee YS, Hwang DS, Hong CB (2000) High temperature stress resistance of Escherichia coli induced by a tobacco class I low molecular weight heat-shock protein. Mol Cells 10:519–524

    PubMed  CAS  Google Scholar 

  • Kim KP, Joe MK, Hong CB (2004) Tobacco small heat-shock protein, NtHSP18.2, has a broad substrate range as a molecular chaperone. Plant Sci 167:1017–1025

    Article  CAS  Google Scholar 

  • Kim R, Kim KK, Yokota H, Kim SH (1998) Small heat shock protein of Methanococcus jannaschii, a hyperthermophile. Proc Natl Acad Sci USA 95:9129–9133

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi Y, Kobayashi E, Sato S, Hotta Y, Miyajima M (1994) Characterization of cDNAs induced in meiotic prophase in lily microsporocytes. DNA Res 1:15–26

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • LaFayette PR, Nagao RT, O’Grady K, Vierling E, Key JL (1996) Molecular characterization of cDNAs encoding low-molecular-weight heat shock proteins of soybean. Plant Mol Biol 30:159–169

    Article  PubMed  CAS  Google Scholar 

  • Lee GJ, Pokala N, Vierling E (1995) Structure and in vitro molecular chaperone activity of cytosolic small heat shock proteins from pea. J Biol Chem 270:10432–10438

    Article  PubMed  CAS  Google Scholar 

  • Lee GJ, Roseman AM, Saibul HR, Vierling E (1997) A small heat shock proteins stable binds heat-denatured model substrates and can maintain a substrate in a folding-competent state. EMBO J 16:659–671

    Article  PubMed  CAS  Google Scholar 

  • Leroux MR, Melki R, Gordon B, Batelier G, Candido EPM (1997) Structure-function studies on small heat shock protein oligomeric assembly and interaction with unfolded polypeptides. J Biol Chem 272:24646–24656

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Shono M (1999) Characterization of mitochondria-located small heat shock protein in tomato (Lycopersicon esculentum). Plant Cell Physiol 40:1297–1304

    PubMed  CAS  Google Scholar 

  • Lopez-Matas M, Nuñez P, Soto A, Allona I, Casado R, Collada C, Guevara M-A, Aragoncillo G, Gomez L (2004) Protein cryoprotective activity of a cytosolic small heat shock protein that accumulates constitutively in chestnut stems and is up-regulated by low and high temperatures. Plant Physiol 134:1708–1717

    Article  PubMed  CAS  Google Scholar 

  • Magnard JL, Vergne P, Dunas D (1996) Complexity and genetic variability heat-shock protein expression in isolated maize microspores. Plant Physiol 111:1085–1096

    PubMed  CAS  Google Scholar 

  • Merck KB, Groenen PJTA, Voorter CEM, de Haard-Hoekman WA, Horwitz J, Boemendal H, de Jong WW (1993) Structural and functional similarities of bovine alpha-crystallin and mouse small heat-shock protein, a family of chaperones. J Biol Chem 268:1046–1052

    PubMed  CAS  Google Scholar 

  • Morrow G, Inaguma Y, Kato K, Tanguay RM (2000) The small heat shock protein Hsp22 of Drosophila melanogaster is a mitochondrial protein displaying oligomeric organization. J Biol Chem 275:31204–31210

    Article  PubMed  CAS  Google Scholar 

  • Sabehat A, Weiss D, Lurie S (1996) The correlation between heat-shock protein accumulation and persistence and chilling tolerance in tomato fruit. Plant Physiol 110:531–537

    Article  PubMed  CAS  Google Scholar 

  • Sanmiya K, Suzuki K, Egawa Y, Shono M (2004) Mitochondrial small heat-shock protein enhances thermotolerance in tobacco plants. FEBS Lett 557:265–268

    Article  PubMed  CAS  Google Scholar 

  • Sanmiya K, Suzuki K, Tagri A, Egawa Y, Shono M (2005) Ovule-spesific expression of the genes for mitochondrial and endoplasmic reticulum localized small heat-shock proteins in tomato flower. Plant Cell Tissue Organ Cult 83:245–250

    Article  CAS  Google Scholar 

  • Scharf D, Siddique M, Vierling E (2001) The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing α-crystallin domains (Acd proteins). Cell Stress Chaperones 6:225–237

    Article  PubMed  CAS  Google Scholar 

  • Smýkal P, Mašin J, Krdý I, Konopásek I, Zárský V (2000) Chaperone activity of tobacco HSP18, a small heat-shock protein, is inhibited by ATP. Plant J 23:703–713

    Article  PubMed  Google Scholar 

  • Sticher L, Biswas AK, Bush DS, Jones RL (1990) Heat shock inhibits α-amylase synthesis in barley aleurone without inhibiting the activity of endoplasmic reticulum marker enzymes. Plant Physiol 92:506–513

    PubMed  CAS  Google Scholar 

  • Sun W, Bernard C, van de Cotte B, Montagu MV, Verbruggen N (2001) At-HSP17.6A, encoding a small heat-shock protein in Arabidopsis, can enhance osmotolerance upon overexpression. Plant J 27:407–415

    Article  PubMed  CAS  Google Scholar 

  • Sun W, Van Montagu M, Verbruggen N (2002) Small heat shock proteins and stress tolerance in plants. Biochim Biophys Acta 1577:1–9

    PubMed  CAS  Google Scholar 

  • Ukaji N, Kuwabara C, Takezawa D, Arakawa K, Yoshida S, Fujikawa S (1999) Accumulation of small heat-shock protein homologs in the edoplasmic reticulum of cortical parenchyma cells in mulberry in association with seasonal cold acclimation. Plant Physiol 120:481–489

    Article  PubMed  CAS  Google Scholar 

  • van Berkel J, Salamini F, Gebhardt C (1994) Transcripts accumulating during cold storage of potato (Solanum tuberosum L.) tubers are sequence related to stress-responsive genes. Plant Physiol 104:445–452

    Article  PubMed  Google Scholar 

  • Vierling E (1991) The role of heat shock-proteins in plant. Annu Rev Plant Physiol Plant Mol Biol 42:579–620

    Article  CAS  Google Scholar 

  • Vierling E, Nagao RT, DeRocher AE, Harris LM (1988) A heat shock protein localized to chloroplasts is a member of a eukaryotic superfamily of heat shock proteins. EMBO J 7:575–581

    PubMed  CAS  Google Scholar 

  • Waters ER, Lee GJ, Vierling E (1996) Evolution, structure and function of small heat shock proteins in plant. J Exp Bot 47:325–338

    Article  CAS  Google Scholar 

  • Wehmeyer N, Hernandez LD, Finkelstein RR, Vierling E (1996) Synthesis of small heat-shock protein is part of developmental program of late seed maturation. Plant Physiol 112:747–757

    Article  PubMed  CAS  Google Scholar 

  • Yeh CH, Chang PFL, Yeh KW, Lin WC, Chen YM, Lin CY (1997) Expression of a gene encoding a 16.9-kDa heat-shock protein, Oshsp16.9, in Escherichia coli enhances thermotolerance. Proc Natl Acad Sci USA 94:10967–10972

    Article  PubMed  CAS  Google Scholar 

  • Zarsky V, Garrido D, Eller N, Tupy J, Vicente O, Schoffl F, Heberle-Bors E (1995) The expression of small heat shock gene is activated during induction of tobacco pollen embryo genesis by starvation. Plant Cell Environ 18:139–147

    Article  CAS  Google Scholar 

  • Zhao C, Shono M, Sun A, Yi S, Li M, Liu J (2007) Constitutive expression of an endoplasmic reticulum small heat shock protein alleviates endoplasmic reticulum stress in transgenic tomato. J Plant Physiol 164:835–841

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by funds from the Bio-oriented Technology Research Advancement Institution. We thank Jennifer Calcaterra and Drs. Kempton Horken and Hasanova Gulnara at the University of Nebraska-Lincoln (USA) for a critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarlan G. Mamedov.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10265_2008_148_MOESM1_ESM.doc

Supplementary Fig. 1. Immunoblot analysis of tomato plant expressing LeHSP21.5 protein. Tomato plant growing and subcellular fractionation was performed as described in Materials and Methods. Ten microliters of total proteins from each fraction were run on 12% SDS-PAGE and transferred to PVDF membrane. Immunoblotting was performed using anti-LeHSP21.5 polyclonal antibody. 1: 25°C, 10,000x g supernatant; 2: 25°C, 200,000× g pellet; 3: 25°C, 200,000× g supernatant; 4: 40°C, 10,000× g supernatant; 5: 40°C, 200,000× g pellet; 6: 40°C, 200,000× g supernatant. (DOC 378 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mamedov, T.G., Shono, M. Molecular chaperone activity of tomato (Lycopersicon esculentum) endoplasmic reticulum-located small heat shock protein. J Plant Res 121, 235–243 (2008). https://doi.org/10.1007/s10265-008-0148-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-008-0148-x

Keywords

Navigation