Skip to main content
Log in

Split-root study of autoregulation of nodulation in the model legume Lotus japonicus

  • Short Communication
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We used a split-root system to determine the timing for induction of the autoregulation of nodulation (AUT) in Lotus japonicus (Regel) Larsen after inoculation with Mesorhizobium loti. The signal took at least five days for full induction of AUT and inhibition of infection thread formation. Strain ML108 (able to nodulate but unable to fix nitrogen) induced full AUT, but ML101 (unable to nodulate or to fix nitrogen) did not induce autoregulation. These results indicate that Nod factor-producing strains induce AUT, but that the nitrogen fixed by rhizobia and supplied to the plant as ammonia does not elicit the AUT in L. japonicus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Caetano-Anolles G, Bauer WD (1988) Feedback regulation of nodule formation in alfalfa. Planta 175:546–557

    Article  Google Scholar 

  • Carroll BJ, Gresshoff PM (1983) Nitrate inhibition of nodulation and nitrogen fixation in white clover. Z Pflanzenphysiol Bd 110:77–88

    CAS  Google Scholar 

  • Carroll BJ, McNeil DL, Gresshoff PM (1985a) Isolation and properties of soybean [Glycine max (L.) Merr.] mutants that nodulate in the presence of high nitrate concentrations. Proc Natl Acad Sci USA 82:4162–4166

    Article  PubMed  CAS  Google Scholar 

  • Carroll BJ, McNeil DL, Gresshoff PM (1985b) A supernodulation and nitrate-tolerant symbiosis (nts) soybean mutant. Plant Physiol 78:34–40

    PubMed  CAS  Google Scholar 

  • Cho MJ, Harper JE (1991) Effect of localized nitrate application on isoflavonoid concentration and nodulation in split-root system of wild-type and nodulation mutant soybean plants. Plant Physiol 95:1106–1112

    PubMed  CAS  Google Scholar 

  • Delves AC, Mathews A, Day DA, Carter AS, Carroll BJ, Gresshoff PM (1986) Regulation of the soybean-Rhizobium nodule symbiosis by shoot and root factors. Plant Physiol 82:588–590

    Article  PubMed  Google Scholar 

  • Francisco PB Jr, Harper JE (1995) Translocatable leaf signal autoregulates soybean nodulation. Plant Sci 107:167–176

    Article  CAS  Google Scholar 

  • Kawaharada Y, Eda S, Minamisawa K, Mitsui H (2007) A Mesorhizobium loti mutant with reduced glucan content shows defective invasion of its host plant Lotus japonicus. Microbiology 153:3983–3993

    Article  PubMed  CAS  Google Scholar 

  • Kosslak RM, Bohlool BB (1984) Suppression of nodule development of one side of a split-root system of soybean caused by prior inoculation of the other side. Plant Physiol 75:125–130

    PubMed  Google Scholar 

  • Krusell L, Madsen LH, Sato S, Aubert G, Genua A, Szczyglowski K, Duc G, Kaneko K, Tabata S, de Bruijn F et al (2002) Shoot control of root development and nodulation is mediated by a receptor-like kinase. Nature 420:422–426

    Article  PubMed  CAS  Google Scholar 

  • Lohar DP, VandenBosch KA (2005) Grafting between model legumes demonstrates roles for roots and shoots in determining nodule type and host/rhizobia specificity. J Exp Bot 56:1643–1650

    Article  PubMed  CAS  Google Scholar 

  • Nakatsukasa-Akune M, Yamashita K, Shimoda Y, Uchiumi T, Abe M, Aoki T, Kamizawa A, Ayabe S, Higashi S, Suzuki A (2005) Suppression of root nodule formation by artificial expression of the TrEnodDR1 (coat protein of white clover cryptic virus 1) gene in Lotus japonicus. Mol Plant Microbe Interact 18:1069–1080

    Article  PubMed  CAS  Google Scholar 

  • Nishimura R, Hayashi M, Wu GJ, Kouchi H, Akao S, Ohmori M, Nagasawa M, Harada K, Kawaguchi M (2002) HAR1 mediates systemic regulation of symbiotic organ development. Nature 420:426–429

    Article  PubMed  CAS  Google Scholar 

  • Nukui N, Ezura H, Yuhashi KI, Yasuta T, Minamisawa K (2000) Effects of ethylene precursor and inhibitors for ethylene biosynthesis and perception on nodulation in Lotus japonicus and Macroptilium atropurpureum. Plant Cell Physiol 41:893–897

    Article  PubMed  CAS  Google Scholar 

  • Oka-Kira E, Tateno K, Miura K, Haga T, Hayashi M, Harada K, Sato S, Tabata S, Shikazono N, Watanabe Y, Fukuhara I, Nagata T, Kawaguchi M (2005) klavier (klv), a novel hypernodulation mutant of Lotus japonicus affected in vascular tissue organization and floral induction. Plant J 44:505–515

    Article  PubMed  CAS  Google Scholar 

  • Okazaki S, Hattori Y, Saeki K (2007) The Mesorhizobium loti purB gene is involved in infection thread formation and nodule development in Lotus japonicus. J Bacteriol 189:8347–8352

    Article  PubMed  CAS  Google Scholar 

  • Penmetsa RV, Cook DR (1997) A legume ethylene-insensitive mutant hyperinfected by its rhizobial symbiont. Science 275:527–530

    Article  PubMed  CAS  Google Scholar 

  • Sagan M, Duc G (1996) Sym28 and Sym29, two new genes involved in regulation of nodulation in pea (Pisum sativum L.). Symbiosis 20:229–245

    Google Scholar 

  • Sargent L, Huang SZ, Rolfe BG, Djordjevic MA (1987) Split-root assays using Trifolium subterraneum show that Rhizobium infection induces a systemic response that can inhibit nodulation of another invasive Rhizobium strain. Appl Environ Microbiol 53:1611–1619

    PubMed  Google Scholar 

  • Schnabel E, Journet EP, de Carvalho-Niebel F, Dug G, Frugoli J (2005) The Medicago truncatula SUNN gene encodes a CLV1-like leucine-rich repeat receptor kinase that regulates nodule number and root length. Plant Mol Biol 58:809–822

    Article  PubMed  CAS  Google Scholar 

  • Suzuki A, Akune M, Kogiso M, Imagama Y, Osuki K, Uchiumi T, Higashi S, Han SY, Yoshida S, Asami T, Abe M (2004) Control of nodule number by the phytohormone abscisic acid in the roots of two leguminous species. Plant Cell Physiol 45:914–922

    Article  PubMed  CAS  Google Scholar 

  • van Brussel AAN, Tak T, Boot KJM, Kijne JW (2002) Autoregulation of root nodule formation: Signals of both symbiotic partners studied in a split-root system of Vicia sativa subsp. nigra. Mol Plant Microbe Interact 15:341–349

    Article  PubMed  Google Scholar 

  • Wopereis J, Pajuelo E, Dazzo FB, Jiang Q, Gresshoff PM, de Bruijn FJ, Stougaard J, Szczyglowski K (2000) Short root mutant of Lotus japonicus with a dramatically altered symbiotic phenotype. Plant J 23:97–114

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Lotus japonicus Miyakojima MG-20 seeds were provided by University of Miyazaki, through the National Bio-Resource Project (NBRP) of the MEXT, Japan. This work was supported in part by the Special Coordination Funds for Promoting Science and Technology from the Ministry of Education, Culture, Sports, Science and Technology in Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiro Suzuki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suzuki, A., Hara, H., Kinoue, T. et al. Split-root study of autoregulation of nodulation in the model legume Lotus japonicus . J Plant Res 121, 245–249 (2008). https://doi.org/10.1007/s10265-007-0145-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-007-0145-5

Keywords

Navigation