Skip to main content
Log in

Salt impact on photosynthesis and leaf ultrastructure of Aeluropus littoralis

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

The effects of salinity (400 mM NaCl) on growth, biomass partitioning, photosynthesis, and leaf ultrastructure were studied in hydroponically grown plants of Aeluropus littoralis (Willd) Parl. NaCl produced a significant inhibition of the main growth parameters and a reduction in leaf gas exchange (e.g. decreased rates of photosynthesis and stomatal conductance). However, NaCl salinity affected neither the composition of photosynthesis pigments nor leaf water content. The reduction in leaf gas exchange seemed to correlate with a decrease in mesophyll thickness as well as a severe disorganisation of chloroplast structure, with misshapen chloroplasts and dilated thylakoid membranes. Conspicuously, mesophyll chloroplasts were more sensitive to salt treatment than those of bundle sheath cells. The effects of NaCl toxicity on leaf structure and ultrastructure and the associated physiological implications are discussed in relation to the degree of salt resistance of A. littoralis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Plant Physiol 24:1–15

    Article  PubMed  CAS  Google Scholar 

  • Barhoumi Z, Djebali W, Smaoui A, Chaîbi W, Abdelly Ch (2006) Contribution of NaCl excretion to salt resistance of Aeluropus littoralis (Willd) Parl. J Plant Physiol. doi:10.1016/j.jplph.2006.05.008

  • Baszynski T, Wajda L, Krol M, Wolinska D, Krupa Z, Tukendorf A (1980) Photosynthetic activities of cadmium-treated tomato plants. Physiol Plant 48:365–370

    Article  CAS  Google Scholar 

  • Bodla MA, Choudhry MR, Shamsi SRA, Baig MS (1995) Salt tolerance in some dominant grasses of Punjab. In: Khan MA, Ungar IA (eds) Biology of salt tolerant plants. University of Karachi, Karachi, Pakistan, pp 190–198

    Google Scholar 

  • Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptations to environmental stresses. Plant Cell 7:1099–1111

    Article  PubMed  CAS  Google Scholar 

  • Clark H, Newton PCD, Barker DJ (1999) Physiological and morphological responses to elevated CO2 and a soil moisture deficit of temperate pasture species growing in an established plant community. J Exp Bot 50:233–242

    Article  CAS  Google Scholar 

  • Cornic G (2000) Drought stress inhibits photosynthesis by decreasing stomatal aperture—not by affecting ATP synthesis. Trends Plant Sci 5:187–188

    Article  Google Scholar 

  • Davis BH (1976) Carotenoids. In: Goodwin T (ed) Chemistry and biochemistry of plants pigments, 2nd edn, vol 2. Academic, London, pp 38–165

  • Debez A, Chaïbi W, Bouzid S (2003) Physiological responses and structural modifications in Atriplex halimus L. Plants exposed to salinity. In: Helmut L, Marina M (eds) Cash crop halophytes: recent studies. Kluwer, Dordrecht

  • Delfine S, Alvino A, Zacchini M, Loreto F (1998) Consequences of salt stress on conductance to CO2 diffusion, rubisco characteristics and anatomy of spinach leaves. Aust J Plant Physiol 25:395–402

    Article  CAS  Google Scholar 

  • Djebali W, Zarrouk M, Brouquisse R, El Kahoui S, Limam F, Ghorbel MH, Chaïbi W (2005) Ultrastructure and lipid alterations induced by cadmium in tomato (Lycopersicon esculentum) chloroplast membranes. Plant Biol 7:358–368

    Article  PubMed  CAS  Google Scholar 

  • Doulis AG, Debia N, Kingston-Smith AH, Foyer CH (1997) Differential localisation of antioxidants in maize leaves. Plant Physiol 114:1031–1037

    PubMed  CAS  Google Scholar 

  • Dubey RS (1997) Photosynthesis in plants under stressful conditions. In: Pessarakli M (ed) Handbook of photosynthesis. Dekker, New York, pp 859–875

    Google Scholar 

  • Durnford DG, Price JA, McKim SM, Sarchfield ML (2003) Lightharvesting complex gene expression is controlled by both transcriptional and post-transcriptional mechanisms during photoacclimation in Chlamydomonas reinhardtii. Physiol Plant 118:193–205

    Article  CAS  Google Scholar 

  • El-Hendawy SE, Hu Y, Schmidhalter U (2005) Growth, ion content, gas exchange, and water relations of wheat genotypes differing in salt tolerances. Aust J Agr Res 56:123–134

    Article  CAS  Google Scholar 

  • Everard JD, Gucci R, Kahn SC, Flore JA, Loescher WH (1994) Gas exchange and carbon partitioning in the leaves of celery (Apium graveolens L.) at various levels of root zone salinity. Plant Physiol 106:281–292

    PubMed  CAS  Google Scholar 

  • Grattan SR, Grieve CM (1992) Mineral element acquisition and growth response of plants grown in saline environments. Agric Ecosyst Environ 28:275–300

    Article  Google Scholar 

  • Gulzar S, Khan MA, Ungar IA (2003) Effects of salinity on growth, ionic content, and plant–water status of Aeluropus lagopoides. Commun Soil Sci Plant Anal 34:1657–1668

    Article  CAS  Google Scholar 

  • Hasan R, Ohnuki Y, Kawasaki M, Taniguchi M, Miyake H (2005) Differential sensitivity of chloroplasts in mesophyll and bundle sheath cells in maize, an NADP-Malic enzyme-type C4 plant, to salinity stress. Plant Prod Sci 8:567–577

    Article  CAS  Google Scholar 

  • Hasegawa PM, Bresan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol 51:463–499

    Article  CAS  Google Scholar 

  • Hayashi H, Murata N (1998) Genetically engineered enhancement of salt tolerance in higher plants. In: Sato K, Murata N (eds) Stress response of photosynthetic organisms: molecular mechanisms and molecular regulation. Elsevier, Amsterdam, pp 133–148

    Google Scholar 

  • Hewitt EJ (1966) Sand and water culture methods used in the study of plant nutrition. Commonw Bur Hortic Tech Commun 22

  • Hwang YH, Chen SH (1995) Anatomical responses in Kandelia candel (L.) Druce seedlings growing in the presence of different concentrations of NaCl. Bot Bull Acad Sin 36:181–188

    CAS  Google Scholar 

  • Kerstiens G, Tych W, Robinson MF, Mansfield TA (2002) Sodium-related partial stomatal closure and salt tolerance of Aster tripolium. New Phytol 153:509–515

    Article  CAS  Google Scholar 

  • Khan MA (2001) Experimental assessment of salinity tolerance of Ceriops tagal seedlings and saplings from the Indus delta, Pakistan. Aquat Bot 70:259–268

    Article  Google Scholar 

  • Khavari-Nejad RA, Mostofi Y (1998) Effects of NaCl on photosynthetic pigments, saccharides, and chloroplast ultrastructure in leaves of tomato cultivars. Photosynthetica 35:151–154

    Article  CAS  Google Scholar 

  • Koyro HW (2006) Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus (L.). Environ Exp Bot 56:136–146

    Article  CAS  Google Scholar 

  • Lichtenthaler HK, Buschmann C (2001) Chlorophylls and carotenoids: measurement and characterization by UV-VIS spectroscopy. Current protocols in food analytical chemistry, Supplement 1. Wiley, New York, pp F4.3.1–F4.3.8

  • Lin CC, Kao CH (2000) Effect of NaCl stress on H2O2 metabolism in rice leaves. Plant Growth Regul 30:151–155

    Article  CAS  Google Scholar 

  • Liphschitz N, Waisel Y (1974) Existence of salt glands in various genera of the gramineae. New Phytol 73:507–513

    Article  Google Scholar 

  • Mäkela P, Kontturi M, Pehu E, Somersalo S (1999) Photosynthetic response of drought and salt-stressed tomato and turnip rape plants to foliar-applied glycine-betaine. Physiol Plant 105:45–50

    Article  Google Scholar 

  • Manetas Y (1990) A re-examination of NaCl effects on phosphoenol pyruvate carboxylase at high physiological enzyme concentrations. Physiol Plant 78:225–229

    Article  CAS  Google Scholar 

  • McNaughton KG, Jarvis PG (1991) Effects of spatial scale on stomatal control of transpiration. Agric Meteorol 54:279–301

    Article  Google Scholar 

  • Mickelbart MV, Marler TE (1996) Root-zone sodium chloride influences photosynthesis, water relations and mineral content of Sapodilla foliage. Hortic Sci 31:230–233

    CAS  Google Scholar 

  • Molas J (2002) Changes of chloroplast ultrastructure and total chlorophyll concentration in cabbage leaves caused by excess of organic Ni(II) complexes. Environ Exp Bot 47:115–126

    Article  CAS  Google Scholar 

  • Netondo GW, Onyango JC, Beck E (2004) Sorghum and salinity: II. Gas exchange and chlorophyll fluorescence of sorghum under salt stress. Crop Sci 44:806–811

    Article  Google Scholar 

  • Oross JW, Thomson WW (1982) The ultrastructure of salt glands of Cynodon and Distichlis (Poaceae). Am J Bot 69:939–949

    Article  Google Scholar 

  • Paliavuyth C, Clough B, Patanaponpaiboon P (2004) Salt uptake and shoot water relations in mangroves. Aquat Bot 78:349–360

    Article  CAS  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349

    Article  PubMed  CAS  Google Scholar 

  • Parida AK, Das AB, Mittra B (2004) Effects of salt on growth, ion accumulation photosynthesis and leaf anatomy of the mangrove, Bruguiera parviflora. Trees 18:167–174

    CAS  Google Scholar 

  • Pollak G, Waisel Y (1979) Ecophysiology of salt excretion in Aeluropus littoralis (Graminae). Physiol Plant 47:177–184

    Article  CAS  Google Scholar 

  • Qiu DL, Lin P, Su JW (2005) Relationship of leaf ultrastructure of mangrove Kandelia candel (L.) Druce to salt tolerance. J For Sci 51:476–480

    Google Scholar 

  • Reynolds RS (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–213

    Article  PubMed  CAS  Google Scholar 

  • Robinson MF, Véry AA, Sanders D, Mansfield TA (1997) How can stomata contribute to salt tolerance? Ann Bot 80:387–393

    Article  CAS  Google Scholar 

  • Rubinigg M, Wenisch J (2002) Root morphology of Plantago maritima L. as affected by NaCl salinity. In: Rubinigg M (ed) Physiological aspects of N nutrition in saline and waterlogged soils. University of Groningen, The Netherlands, pp 53–64

  • Sabatini DD, Bensch K, Barnett RJ (1963) Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. Cell Biol 17:19–58

    Article  CAS  Google Scholar 

  • Seemann JR, Critchley C (1985) Effect of salt stress on the growth, ion content, stomatal behavior, and photosynthetic capacity of a salt sensitive species, Phaseolus vulgaris L. Planta 164:151–162

    Article  CAS  Google Scholar 

  • Sibole JV, Cabot C, Poschenrieder C, Barceló J (2003) Ion allocation in two different salt-tolerant Mediterranean Medicago species. J Plant Physiol 160:1361–1365

    Article  PubMed  CAS  Google Scholar 

  • Sifola MI, Postiglione L (2002) The effect of increasing NaCl in irrigation water on growth, gas exchange and yield of tobacco Burley type. Field Crop Res 74:81–91

    Article  Google Scholar 

  • Silaeva AM (1978) Structure of chloroplasts and factors of the environment. Naukova Dumka, Kiev

    Google Scholar 

  • Somaru R, Naidoo Y, Naidoo G (2002) Morphology and ultrastructure of the leaf salt glands of Odyssea paucinervis (Stapf) (Poaceae). Flora 197:67–57

    Google Scholar 

  • Spurr AR (1969) A low viscosity epoxy resin embedding medium for electron microscopy. J Ultras Res 26:31–43

    Article  CAS  Google Scholar 

  • Suárez N, Sobra MA, Medina E (1998) Salinity on the leaf water relations components and ion accumulation patterns in Avicennia germinans (L.) seedlings. Oecologia 114:299–304

    Article  Google Scholar 

  • Torgasheva EG (1984) Ultrastructural changes in the chloroplasts of leaf mesophyll of Morus alba (Moraceae) growing in vicinity of an aluminium plants. Bot Zh 69:921–925

    Google Scholar 

  • Ungar IA (1996) Effect of salinity on seed germination, growth and ion accumulation of Atriplex patula (Chenopodiaceae). Am J Bot 83:604–607

    Article  Google Scholar 

  • Varadi G, Polyanka H, Darko E, Lehoczki E (2003) Atrazine resistance entails a limited xanthophylls cycle activity, a lower PSII efficiency and altered pattern of excess excitation dissipation. Physiol Plant 118:47–56

    Article  PubMed  CAS  Google Scholar 

  • Vijaranakul U, Jayaswal RK, Nadakavukaren MJ (2001) Alteration in chloroplast ultrastructure of suspension cultured Nicotiana tabaccum cells by cadmium. Sci Asia 27:227–231

    CAS  Google Scholar 

  • Vogel JC, Fuls A, Danin A (1986) Geographical and environmental distribution of C3 and C4 grasses in the Sinai, Negev, and Judean deserts. Oecologia 70:258–265

    Article  Google Scholar 

  • Woodrow IE, Berry JA (1988) Enzymatic regulation of photosynthetic CO2 fixation in C3 plants. Annu Rev Plant Physiol Plant Mol Biol 39:533–594

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Prof. Koyro Hans-Werner and Prof. Zaouchi Hédi for critical reading and comments, Prof. Helleli Rachid for providing the LCA-4 portable photosynthesis system, and Ms Aouatef Ben Ammar for her help regarding micrography.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zouhaier Barhoumi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barhoumi, Z., Djebali, W., Chaïbi, W. et al. Salt impact on photosynthesis and leaf ultrastructure of Aeluropus littoralis . J Plant Res 120, 529–537 (2007). https://doi.org/10.1007/s10265-007-0094-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-007-0094-z

Keywords

Navigation