Skip to main content
Log in

Distortion representations of multivariate distributions

  • Original Paper
  • Published:
Statistical Methods & Applications Aims and scope Submit manuscript

Abstract

The univariate distorted distributions were introduced in risk theory to represent changes (distortions) in the expected distributions of some risks. Later, they were also applied to represent distributions of order statistics, coherent systems, proportional hazard rate and proportional reversed hazard rate models, etc. In this paper we extend this concept to the multivariate setup. We show that, in some cases, they are a valid alternative to the copula representation, especially when the marginal distributions may not be easily handled. Several examples illustrate the applications of such representations in statistical modeling. They include the study of paired (dependent) ordered data, joint residual lifetimes, order statistics and coherent systems

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmadi J, Nagaraja HN (2020) Conditional properties of a random sample given an order statistic. Stat Pap 61:1971–1996

    Article  MathSciNet  Google Scholar 

  • Arias-Nicolás P, Ruggeri F, Suárez-Llorens A (2016) New classes of priors based on stochastic orders and distortion functions. Bayesian Anal 11:1107–1136

    Article  MathSciNet  Google Scholar 

  • Barlow RE, Proschan F (1975) Statistical theory of reliability and life testing. International Series in Decision Processes, Holt, Rinehart and Winston Inc, New York

    MATH  Google Scholar 

  • Durante F, Foschi R, Sarkoci P (2010) Distorted copulas: constructions and tail dependence. Commun Stat-Theory Methods 39:2288–2301

    Article  MathSciNet  Google Scholar 

  • Durante F, Foschi R, Spizzichino F (2008) Threshold copulas and positive dependence. Stat Probab Lett 78:2902–2909

    Article  MathSciNet  Google Scholar 

  • Durante F, Mesiar R, Papini PL, Sempi C (2007) \(2\)-increasing binary aggregation operators. Inf Sci 177:111–129

    Article  MathSciNet  Google Scholar 

  • Durante F, Sempi C (2016) Principles of copula theory. CRC/Chapman & Hall, London

    MATH  Google Scholar 

  • Embrechts P (2009) Copulas: a personal view. J Risk Insur 76:639–650

    Article  Google Scholar 

  • Fermanian JD, Wegkamp MH (2012) Time-dependent copulas. J Multivar Anal 110:19–29

    Article  MathSciNet  Google Scholar 

  • Joe H (2005) Asymptotic efficiency of the two-stage estimation method for copula-based models. J Multivar Anal 94:401–419

    Article  MathSciNet  Google Scholar 

  • Joe H (2014) Dependence modeling with copulas. CRC/Chapman & Hall, Boca Raton, FL

    Book  Google Scholar 

  • Klüppelberg C, Resnick SI (2008) The Pareto copula, aggregation of risks and the emperor’s socks. J Appl Probab 45:67–84

    Article  MathSciNet  Google Scholar 

  • Koenker R (2005) Quantile Regression. Cambridge University Press

  • Liu P, Schied A, Wang R (2021) Distributional transforms, probability distortions, and their applications. Mathematics of Operations Research (in press)

  • Longobardi M, Pellerey F (2019) On the role of dependence in residual lifetimes. Stat Probab Lett 153:56–64

    Article  MathSciNet  Google Scholar 

  • López-Díaz M, Sordo MA, Suárez-Llorens A (2012). On the Lp-metric between a probability distribution and its distortion. Insurance: Mathematics and Economics 51, 257–264

  • Mai J-F, Scherer M (2017) Simulating copulas, 2nd edn. World Scientific, Singapore

    Book  Google Scholar 

  • Morillas PM (2005) A method to obtain new copulas from a given one. Metrika 61:169–184

    Article  MathSciNet  Google Scholar 

  • Navarro J (2018) Distribution-free comparisons of residual lifetimes of coherent systems based on copula properties. Stat Pap 59:781–800

    Article  MathSciNet  Google Scholar 

  • Navarro J, Balakrishnan N (2010) Study of some measures of dependence between order statistics and systems. J Multivar Anal 101:52–67

    Article  MathSciNet  Google Scholar 

  • Navarro J, Calì C (2019) Inactivity times of coherent systems with dependent components under periodical inspection. Appl Stoch Models Bus Ind 35:871–892

    Article  MathSciNet  Google Scholar 

  • Navarro J, Durante F (2017) Copula-based representations for the reliability of the residual lifetimes of coherent systems with dependent components. J Multivar Anal 158:87–102

    Article  MathSciNet  Google Scholar 

  • Navarro J, del Águila Y, Sordo MA, Suárez-Llorens A (2013) Stochastic ordering properties for systems with dependent identically distributed components. Appl Stochastic Models Bus Ind 29:264–278

    Article  MathSciNet  Google Scholar 

  • Navarro J, del Águila Y, Sordo MA, Suárez-Llorens A (2016) Preservation of stochastic orders under the formation of generalized distorted distributions. Methodol Comput Appl Probab 18:529–545

    Article  MathSciNet  Google Scholar 

  • Navarro J, Durante F, Fernández-Sánchez J (2021) Connecting copula properties with reliability properties of coherent systems. Appl Stochast Models Bus Ind 37:496–512

    Article  MathSciNet  Google Scholar 

  • Navarro J, Longobardi M, Pellerey F (2017) Comparison results for inactivity times of \(k\)-out-of-\(n\) and general coherent systems with dependent components. Test 26:822–846

    Article  MathSciNet  Google Scholar 

  • Navarro J, Samaniego FJ, Balakrishnan N (2010) The joint signature of coherent systems with shared components. J Appl Probab 47:235–253

    Article  MathSciNet  Google Scholar 

  • Navarro J, Sordo MA (2018) Stochastic comparisons and bounds for conditional distributions by using copula properties. Depend Modeling 6:156–177

    Article  MathSciNet  Google Scholar 

  • Nelsen RB (2006) An introduction to copulas, 2nd edn. Springer, New York

    MATH  Google Scholar 

  • Omelka M, Gijbels I, Veraverbeke N (2009) Improved kernel estimation of copulas: weak convergence and goodness-of-fit testing. Ann Stat 37:3023–3058

    Article  MathSciNet  Google Scholar 

  • Shaked M, Shanthikumar JG (2007) Stochastic orders. Springer Series in Statistics, Springer, New York

    Book  Google Scholar 

  • Sklar A (1959) Fonctions de répartition à \(n\) dimensions et leurs marges. Publications de l’Institut de Statistique de l’Université de Paris 8:229–231

    MathSciNet  MATH  Google Scholar 

  • Sordo MA, Castaño-Martínez A, Pigueiras G (2016). A family of premium principles based on mixtures of TVaRs. Insurance: Mathematics and Economics 70, 397–405

  • Sordo MA, Suárez-Llorens A (2011). Stochastic comparisons of distorted variability measures. Insurance: Mathematics and Economics 49, 11–17

  • Sumarjaya IW (2017). A survey of kernel-type estimators for copula and their applications. Journal of Physics: Conference Series 893 012027.https://doi.org/10.1088/1742-6596/893/1/012027

  • Taylor MD (2016) Multivariate measures of concordance for copulas and their marginals. Depend Modeling 4:224–236

    Article  MathSciNet  Google Scholar 

  • Valdez EA, Xiao Y (2011) On the distortion of a copula and its margins. Scand Actuar J 4:292–317

    Article  MathSciNet  Google Scholar 

  • Wang S (1996) Premium calculation by transforming the layer premium density. ASTIN Bull 26:71–92

    Article  Google Scholar 

  • Yaari ME (1987) The dual theory of choice under risk. Econometrica 55:95–115

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for the careful reading and several useful suggestions. JN is partially supported by Ministerio de Ciencia e Innovación of Spain under grant PID2019-103971GB-I00/AEI/10.13039/501100011033, CC and ML are partially supported by the GNAMPA research group of INDAM (Istituto Nazionale di Alta Matematica) and CC, ML and FD are also partially supported by MIUR-PRIN 2017, Project “Stochastic Models for Complex Systems” (No. 2017JFFHSH)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Longobardi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (R 2 kb)

Appendix

Appendix

Proof of proposition 1

For every \(i=1,\dots ,n\), \(G_i\) is continuous and, hence, its range \(Ran(G_i)\) contains the interval (0, 1). Let D be the distribution function of \((G_1(X_1),\dots ,G_n(X_n))\). Then it can be checked that D satisfies properties (i), (ii) and (iii) of Definition 1. Thus, \(D\in {\mathcal {D}}_n\).

Moreover, for every \((x_1,\dots ,x_n)\) in \({\mathbb {R}}^n\), it follows that

$$\begin{aligned} F(x_1,\dots ,x_n)&=\Pr (X_1\le x_1,\dots ,X_n\le x_n)\\&=\Pr (G_1(X_1)\le G_1(x_1),\dots ,G_n(X_n)\le G_n(x_n))\\&=D(G_1(x_1),\dots ,G_n(x_n)), \end{aligned}$$

where in the second equality we use that \(G_i\) is strictly increasing in the support of \(X_i\). Hence is \(F\equiv MDD(G_1,\dots ,G_n)\).\(\square\)

Proof of proposition 2

Since F is continuous, (1) holds for a unique copula C. Thus, for every \((x_1,\dots ,x_n)\) in \({\mathbb {R}}^n\), it follows that

$$\begin{aligned} D(G_1(x_1),\dots ,G_n(x_n))=C(F_1(x_1),\dots ,F_n(x_n)). \end{aligned}$$

For every \(i=1,\dots ,n\), since \(G_i\) is continuous, there exists \(u_i\in (0,1)\) such that \(x_i=G_i^{-1}(u_i)\), where \(G_i^{-1}\) is quasi–inverse of G (see, e.g., Durante and Sempi 2016). Thus, it follows that

$$\begin{aligned} D(u_1,\dots ,u_n)=C(F_1(G_i^{-1}(u_1)),\dots ,F_n(G_i^{-1}(u_n))), \end{aligned}$$

which is the desired assertion. \(\square\)

Proof of proposition 3

Clearly, if (2) holds for some distribution functions \(G_1,\dots ,G_n\) and \(D\in {\mathcal {D}}_n\), then

$$\begin{aligned} \lim _{x_i\rightarrow -\infty }F(x_1,\dots ,x_n)=\lim _{x_i\rightarrow -\infty }D(G_1(x_1),\dots ,G_n(x_n)) =0 \end{aligned}$$

for \(i=1,\dots ,n\) and

$$\begin{aligned} \lim _{\min (x_1,\dots ,x_n)\rightarrow +\infty }F(x_1,\dots ,x_n)&=\lim _{\min (x_1,\dots ,x_n)\rightarrow +\infty }D(G_1(x_1),\dots ,G_n(x_n))\\&=D(1,\dots ,1)=1 \end{aligned}$$

since \(D \in {\mathcal {D}}_n\). Moreover, F is right-continuous in each variable since D is continuous and \(G_1,\dots ,G_n\) are right-continuous.

Let us consider now \((x_1,\dots ,x_n)\in {\mathbb {R}}^n\) and \((y_1,\dots , y_n)\in {\mathbb {R}}^n\) such that \(x_i\le y_i\) for \(i=1,\dots ,n\). Then we define \(u_i=G_i(x_i)\) and \(v_i=G_i(y_i)\) for \(i=1,\dots ,n\). As \(G_i\) is a distribution function, we have \(0\le u_i\le v_i\le 1\) for \(i=1,\dots ,n\). Therefore

$$\begin{aligned} \triangle _{(x_1,\dots ,x_n)}^{(y_1,\dots ,y_n)} F=\triangle _{(u_1,\dots ,u_n)}^{(v_1,\dots ,v_n)} D\ge 0 \end{aligned}$$

since D satisfies property (iii) in Definition 1. Therefore, F is a proper multivariate distribution function. \(\square\)

Proof of Proposition 5

The joint distribution function of \((X_1,\dots ,X_m)\) can be written as

$$\begin{aligned} F_{1,\dots ,m}(x_1,\dots ,x_m)=F(x_1,\dots ,x_m,+\infty ,\dots ,+\infty ) \end{aligned}$$

for all \((x_1,\dots ,x_m)\in {\mathbb {R}}^m\). Then (5) is obtained from (2) taking into account that \(G_i(+\infty )=1\) for any distribution function \(G_i\) and \(i=m+1,\dots ,n\). Finally, (5) implies \(D_{1,\dots ,m}\in {\mathcal {D}}_m\). \(\square\)

Proof of Proposition 7

The conditional PDF of \((X_2|X_1=x_1)\) can be written as

$$\begin{aligned} f_{2|1}(x_2|x_1)=\frac{f(x_1,x_2)}{f_1(x_1)} \end{aligned}$$

for all \(x_1,x_2\) such that \(f_1(x_1)>0\). Then by using (7) and the fact that

$$\begin{aligned} f_1(x_1)=g_1(x_1)D'_1(G_1(x_1))>0, \end{aligned}$$

where \(D_1(u):=D(u,1)\) and \(D'_1(u)=\partial _1 D(u,1)\), we obtain

$$\begin{aligned} f_{2|1}(x_2|x_1) =g_2(x_2)\frac{\partial _{1,2}D(G_1(x_1),G_2(x_2))}{\partial _1D(G_1(x_1),1)}. \end{aligned}$$

Thus, the conditional distribution function can be obtained as

$$\begin{aligned} F_{2|1}(x_2|x_1)=\int _{-\infty }^{x_2} f_{2|1}(z|x_1) dz= \int _{-\infty }^{x_2} g_2(z)\ \frac{\partial _{1,2}D(G_1(x_1),G_2(z))}{\partial _1D(G_1(x_1),1)}dz. \end{aligned}$$

Now, if we assume \(\lim _{v\rightarrow 0^+}\partial _1D(G_1(x_1),v)=0\), then

$$\begin{aligned} F_{2|1}(x_2|x_1)= \left[ \frac{ \partial _{1}D(G_1(x_1),G_2(z))}{\partial _1D(G_1(x_1),1)}\right] _{z=-\infty }^{x_2}=\frac{\partial _{1}D(G_1(x_1),G_2(x_2))}{\partial _1D(G_1(x_1),1)}. \end{aligned}$$

Hence, (8) holds. \(\square\)

Proof of Proposition10

First we note that \(\Pr (X_i>t)\ge \Pr (X_1>t,\dots ,X_n>t)>0\) for \(i=1,\dots ,n\). So we can consider the survival functions \(\bar{F}_{1,t},\dots ,\bar{F}_{n,t}\) of the marginal residual lifetimes at time t. Then we note that \({\bar{F}}_t\) can be written as

$$\begin{aligned} {\bar{F}}_t(x_1,\dots ,x_n)&=\Pr (X_1-t>x_1,\dots ,X_n-t>x_n|X_1>t,\dots ,X_n>t)\\&=\frac{\Pr (X_1>t+x_1,\dots ,X_n>t+x_n)}{\Pr (X_1>t,\dots ,X_n>t)}\\&=\frac{ {\bar{F}}(t+x_1,\dots ,t+x_n)}{ {\bar{F}}(t,\dots ,t)} \end{aligned}$$

for \(x_1,\dots ,x_n\ge 0\). Now we use the following copula representation for \({\bar{F}}\) (obtained from Sklar’s theorem) \({\bar{F}}(x_1,\dots ,x_n)={\hat{C}}({\bar{F}}_1(x_1),\dots ,{\bar{F}}_n(x_n)),\) where \({\hat{C}}\) is a continuous survival copula of \({\bar{F}}\). Hence

$$\begin{aligned} {\bar{F}}_t(x_1,\dots ,x_n)&=\frac{ {\bar{F}}(t+x_1,\dots ,t+x_n)}{ {\bar{F}}(t,\dots ,t)}\\&=\frac{{\hat{C}}({\bar{F}}_1(t+x_1),\dots ,{\bar{F}}_n(t+x_n))}{{\hat{C}}({\bar{F}}_1(t),\dots ,{\bar{F}}_n(t))}\\&=\frac{{\hat{C}}({\bar{F}}_1(t){\bar{F}}_{1,t}(x_1),\dots ,{\bar{F}}_n(t) {\bar{F}}_{n,t}(x_n))}{{\hat{C}}({\bar{F}}_1(t),\dots ,{\bar{F}}_n(t))}\\&={\hat{D}}_t(\bar{F}_{1,t}(x_1),\dots ,\bar{F}_{n,t}(x_n)) \end{aligned}$$

and (10) holds for the function \(D_t\) in (11). Hence \({\hat{D}}_t\in {\mathcal {D}}_n\). \(\square\)

Survival function of \({\mathbf {X}}^{(n)}_t\) given by (12) We aim at calculating the survival function of

$$\begin{aligned} {\mathbf {X}}^{(n,\le )}_t:=(X_1-t,\dots ,X_n-t|X_1>t,\dots ,X_{n-1}>t,X_n\le t) \end{aligned}$$

To this end, consider that

$$\begin{aligned} {\bar{F}}^{(n,\le )}_t(x_1&,\dots ,x_{n-1})\\&=\Pr (X_1-t>x_1,\dots ,X_{n-1}-t>x_{n-1}|X_1>t,\dots ,X_{n-1}>t,X_n\le t)\\&=\frac{\Pr (X_1>t+x_1,\dots ,X_{n-1}>t+x_{n-1},X_n\le x_n)}{\Pr (X_1>t,\dots ,X_{n-1}>t,X_n\le t)}\\&=\frac{\Pr (X_1>t+x_1,\dots ,X_{n-1}>t+x_{n-1})}{\Pr (X_1>t,\dots ,X_{n-1}>t,X_n\le t)}\\ {}&\quad -\frac{\Pr (X_1>t+x_1,\dots ,X_{n-1}>t+x_{n-1},X_n>t)}{\Pr (X_1>t,\dots ,X_{n-1}>t,X_n\le t)}\\&=\frac{ {\bar{F}}(t+x_1,\dots ,t+x_{n-1},0)- {\bar{F}}(t+x_1,\dots ,t+x_{n-1},t)}{\Pr (X_1>t,\dots ,X_{n-1}>t,X_n\le t)}\\&=\frac{ {\bar{F}}(t+x_1,\dots ,t+x_{n-1},0)- {\bar{F}}(t+x_1,\dots ,t+x_{n-1},t)}{{\bar{F}}(t,\dots ,t,0)- {\bar{F}}(t,\dots ,t)}\\&=\frac{ {\hat{C}}({\bar{F}}_1(t+x_1),\dots ,{\bar{F}}_{n-1}(t+x_{n-1}), 1)}{{\hat{C}}({\bar{F}}_1(t),\dots ,{\bar{F}}_{n-1}(t),1)- {\hat{C}}({\bar{F}}_1(t),\dots ,{\bar{F}}_{n}(t))} \\ {}&\quad -\frac{ {\hat{C}}({\bar{F}}_1(t+x_1),\dots ,{\bar{F}}_{n-1}(t+x_{n-1}), {\bar{F}}_n(t))}{{\hat{C}}({\bar{F}}_1(t),\dots ,{\bar{F}}_{n-1}(t),1)- {\hat{C}}({\bar{F}}_1(t),\dots ,{\bar{F}}_{n}(t))} \end{aligned}$$

for \(x_1,\dots ,x_{n-1}\ge 0\). Hence it can be written as

$$\begin{aligned} {\bar{F}}^{(n,\le )}_t(x_1,\dots ,x_{n-1})=D^{(n,\le )}_t(\bar{F}_{1,t}(x_1), \dots ,\bar{F}_{n-1,t}(x_{n-1})), \end{aligned}$$

where \(\bar{F}_{1,t},\dots ,\bar{F}_{n-1,t}\) are the survival functions of the univariate residual lifetimes,

$$\begin{aligned} D^{(n,\le )}_t({\mathbf {u}})=\frac{ {\hat{C}}({\bar{F}}_1(t)u_1,\dots ,{\bar{F}}_{n-1}(t)u_{n-1}, 1)- {\hat{C}}({\bar{F}}_1(t)u_1,\dots ,{\bar{F}}_{n-1}(t) u_{n-1}, {\bar{F}}_n(t))}{{\hat{C}}({\bar{F}}_1(t),\dots ,{\bar{F}}_{n-1}(t),1)- {\hat{C}}({\bar{F}}_1(t),\dots ,{\bar{F}}_{n}(t))} \end{aligned}$$

for \({\mathbf {u}}=(u_1,\dots ,u_{n})\in [0,1]^n\) and \(D^{(n,\le )}_t\in {\mathcal {D}}_{n-1}\). \(\square\)

Proof of Proposition 11

The distortion function for \(n=3\) can be obtained as follows for \(0\le u_1\le u_2 \le u_3\le 1\). If we assume \(F(x)=x\) for \(x\in [0,1]\), then

$$\begin{aligned} D(u_1,u_2,u_3)&=\Pr (X_{1:3}\le u_1,X_{2:3}\le u_2,X_{3:3}\le u_3)\\&=\Pr ( (A_1\cup A_2\cup A_3)\cap (A_{1,2}\cup A_{1,3}\cup A_{2,3})\cap A_{1,2,3}), \end{aligned}$$

where \(A_i=\{ X_i\le u_1\}\), \(A_{i,j}=\{ X_i\le u_2\}\cap \{ X_j \le u_2\}\), and \(A_{1,2,3}=\{ X_1\le u_3\}\cap \{ X_2 \le u_3\}\cap \{ X_3 \le u_3\}\) for \(i,j\in \{1,2,3\}\). Hence

$$\begin{aligned} D(u_1,u_2,u_3)&=\Pr ( B_1\cup \dots \cup B_9), \end{aligned}$$
(21)

where \(B_1=A_1\cap A_{1,2}\cap A_{1,2,3}\), \(B_2=A_2\cap A_{1,2}\cap A_{1,2,3}\), \(B_3=A_3\cap A_{1,2}\cap A_{1,2,3}\), \(B_4=A_1\cap A_{1,3}\cap A_{1,2,3}\), \(B_5=A_2\cap A_{1,3}\cap A_{1,2,3}\), \(B_6=A_3\cap A_{1,3}\cap A_{1,2,3}\), \(B_7=A_1\cap A_{2,3}\cap A_{1,2,3}\), \(B_8=A_2\cap A_{2,3}\cap A_{1,2,3}\), and \(B_9=A_3\cap A_{2,3}\cap A_{1,2,3}\). Hence, the formula for D is obtained by applying the inclusion-exclusion formula to (21) taking into account that all these probabilities can be computed from C. For example

$$\begin{aligned} \Pr (B_1)=\Pr (A_1\cap A_{1,2}\cap A_{1,2,3})=\Pr (X_1\le u_1,X_2\le u_2,X_3\le u_3)=C(u_1,u_2,u_3) \end{aligned}$$

and

$$\begin{aligned} \Pr (B_1\cap B_2)&=\Pr (A_1\cap A_2\cap A_{1,2}\cap A_{1,2,3})\\&=\Pr (X_1\le u_1,X_2\le u_1,X_3\le u_3)\\&=C(u_1,u_1,u_3) \end{aligned}$$

\(0\le u_1\le u_2 \le u_3\le 1\). The other probabilities can be obtained in a similar way. Clearly, this procedure can also be applied to the n dimensional case (but the expression for D gets really involved).

Proof of Proposition 12

Let \({\mathcal {C}}_1,\dots , {\mathcal {C}}_s\) and \({\mathcal {C}}^*_1,\dots , {\mathcal {C}}^*_{s^*}\) be the minimal cut sets of T and \(T^*\), respectively. Hence the joint distribution \(F(x,y)=\Pr (T\le x, T^*\le y)\) can be written as

$$\begin{aligned} F(x,y)&=\Pr (\min _{i=1,\dots ,s}\max _{k\in {\mathcal {C}}_i}X_k \le x, \min _{j=1,\dots ,s^*}\max _{k\in {\mathcal {C}}^*_j}X_k \le y)\\&=\Pr ((A_1\cup \dots \cup A_s)\cap (A^*_1\cup \dots \cup A^*_{s^*}))\\&=\Pr \left( \cup _{i=1}^s\cup _{j=1}^{s^*} B_{i,j} \right) , \end{aligned}$$

where \(A_i:=\{\max _{k\in {\mathcal {C}}_i}X_k \le x\}\), \(A^*_j:=\{\max _{k\in {\mathcal {C}}^*_j}X_k \le y\}\) and \(B_{i,j}:=A_i\cap A^*_j\). Now, we can apply the inclusion-exclusion formula to the union of the sets \(B_{i,j}\). Moreover we note that, if \(x\le y\), then

$$\begin{aligned} \Pr (B_{i,j})&=\Pr \left( \max _{k\in {\mathcal {C}}_i} X_k \le x, \max _{k\in {\mathcal {C}}^*_j}X_k \le y \right) \\&=\Pr \left( \max _{k\in {\mathcal {C}}_i}X_k \le x, \max _{k\in {\mathcal {C}}^*_j-{\mathcal {C}}_i}X_k \le y \right) =C_{{\mathcal {C}}_i,{\mathcal {C}}^*_j}(F(x),F(y)), \end{aligned}$$

where \({\mathcal {C}}^*_j-{\mathcal {C}}_i ={\mathcal {C}}^*_j\cap \mathcal {{\bar{C}}}_i\) (\({\bar{A}}\) is the complementary set of the set A), \(C_{{\mathcal {C}}_i,{\mathcal {C}}^*_j}(u,v):=C(u_1,\dots ,u_n)\), \(u_k=F(x)\) if \(k\in {\mathcal {C}}_i\), \(u_k=F(y)\) if \(k\in {\mathcal {C}}^*_j-{\mathcal {C}}_i\), and \(u_k=1\) if \(k\notin {\mathcal {C}}_i\cup {\mathcal {C}}^*_j\). Similar expressions can be obtained for the other probabilities in the inclusion-exclusion formula as \(\Pr (B_{i,j}\cap B_{\ell ,r})\), \(\dots\) and for \(x>y\). Hence, we obtain (19). \(\square\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navarro, J., Calì, C., Longobardi, M. et al. Distortion representations of multivariate distributions. Stat Methods Appl 31, 925–954 (2022). https://doi.org/10.1007/s10260-021-00613-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10260-021-00613-2

Keywords

Mathematics Subject Classification

Navigation