Skip to main content
Log in

On score vector- and residual-based CUSUM tests in ARMA–GARCH models

  • Original Paper
  • Published:
Statistical Methods & Applications Aims and scope Submit manuscript

Abstract

In this study, we consider the problem of testing for a parameter change in ARMA–GARCH models. We suggest two types of cumulative sum (CUSUM) tests, namely, score vector- and residual-based CUSUM tests. It is shown that under regularity conditions, their limiting null distributions are the sup of Brownian bridges. A simulation study and real data analysis are conducted for illustration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Berkes I, Gombay E, Horváth L, Kokoszka P (2004a) Sequential change-point detection in GARCH (p, q) models. Econom Theory 20(6):1140–1167

    Article  MathSciNet  MATH  Google Scholar 

  • Berkes I, Horváth L, Kokoszka P (2004b) Testing for parameter constancy in GARCH (p, q) models. Stat Probab Lett 70(4):263–273

    Article  MathSciNet  MATH  Google Scholar 

  • Billingsley P (1968) Convergence of probability measure. Wiley, New York

    MATH  Google Scholar 

  • Chen M, An HZ (1998) A note on the stationarity and the existence of moments of the GARCH model. Stat Sin 8:505–510

    MathSciNet  MATH  Google Scholar 

  • Francq C, Zakoïan j-M (2004) Maximum likelihood estimation of pure GARCH and ARMA–GARCH processes. Bernoulli 10:605–637

    Article  MathSciNet  MATH  Google Scholar 

  • Francq C, Zakoïan j-M (2011) GARCH models: structure, statistical inference and financial applications. Wiley, New York

  • Kim S, Cho S, Lee S (2000) On the cusum test for parameter changes in GARCH(1,1) models. Commun Stat Theory Methods 29:445–462

    Article  MathSciNet  MATH  Google Scholar 

  • Lee J, Lee S (2015) Parameter change test for nonlinear time series models with GARCH type errors. J Korean Math Soc 52:503–522

    Article  MathSciNet  MATH  Google Scholar 

  • Lee S, Lee J (2014) Residual based cusum test for parameter change in AR–GARCH models. In: Huynh VN, Kreinovich V, Sriboonchitta S (eds) Modeling dependence in econometrics: advances in intelligent systems and computing, vol 251. Springer, Cham, pp 101–111

  • Lee S, Ha J, Na O, Na S (2003) The cusum test for parameter change in time series models. Scand J Stat 30:781–796

    Article  MathSciNet  MATH  Google Scholar 

  • Lee S, Park S (2001) The cusum of squares test for scale changes in infinite order moving average processes. Scand J Stat 28:625–644

    Article  MathSciNet  MATH  Google Scholar 

  • Lee S, Song J (2008) Test for parameter change in ARMA models with GARCH errors. Stat Probab Lett 78:1990–1998

    Article  MATH  Google Scholar 

  • Lee S, Tokutsu Y, Maekawa K (2004) The cusum test for parameter change in regression models with ARCH errors. J Japan Stat Soc 34:173–188

    Article  MathSciNet  MATH  Google Scholar 

  • Ling S (1999) On the probabilistic properties of a double threshold ARMA conditional heteroskedastic model. J Appl Probab 36(3):688–705

    Article  MathSciNet  MATH  Google Scholar 

  • Page E (1955) A test for change in a parameter occurring at an unknown point. Biometrika 42:523–527

    Article  MathSciNet  MATH  Google Scholar 

  • Straumann D, Mikosch T (2006) Quasi-maximum-likelihood estimation in conditionally heteroscedastic time series: a stochastic recurrence equations approach. Ann Stat 34(5):2449–2495

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to the Editor and two anonymous referees for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangyeol Lee.

Additional information

This work is supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and future Planning (No. 2015R1A2A2A01003894).

Appendix

Appendix

The following propositions are due to Lee and Song (2008) and Francq and Zakoïan (2004). Throughout this section, \(K>0\) and \(0<\rho <1\) denote universal constants and the norm of a matrix \(A=(a_{ij})\) is defined by \(\Vert A\Vert =\sum |a_{ij}|\).

Proposition 1

Under the same conditions in Theorem 3, we have

$$\begin{aligned} \max _{1\le k\le n}\frac{k}{\sqrt{n}}\Vert \varDelta _{1,k}\Vert =o_{\mathrm {P}}(1), \end{aligned}$$

where \(\varDelta _{1,k}= {\partial _\theta {\tilde{L}}_{k}(\theta _0)}-{\partial _\theta L_k(\theta _0)}\).

Proposition 2

Under the same conditions in Theorem 3, we have

$$\begin{aligned} \max _{1\le k\le n}\frac{k}{\sqrt{n}}\Vert \varDelta _{2,k}\Vert =o_{\mathrm {P}}(1), \end{aligned}$$

where \(\varDelta _{2,k}= \bigg ({\partial _{\theta \theta } {\tilde{L}}_k(\tilde{\theta }_{k})}-\mathcal {J}\bigg )({\hat{\theta }}_{k}-\theta _0)\).

Proposition 3

If \((\mathbf{A}0)\)\((\mathbf{A}3)\) holds, then under \(H_0\),

$$\begin{aligned}&\sup _{\theta \in \varTheta }|\epsilon _t-{\tilde{\epsilon }}_t|\le K \rho ^t \ \ a.s.,\ \ \Big |\frac{1}{\sigma _t^2}-\frac{1}{{\tilde{\sigma }}_t^2}\Big |\le K\rho ^t \frac{S_{t-1}}{\sigma _t^2}, \ \ |{\tilde{\epsilon }}_t^2-\epsilon _t^2|\le K\rho ^t(|\epsilon _t|+1), \end{aligned}$$

where \(S_{t-1}=\sum _{k=1-q}^{t-1}(|\epsilon _k|+1)\). Further,

$$\begin{aligned} |{\tilde{\sigma }}_t^2-\sigma _t^2|\le & {} K\rho ^t, \ \ \Big |\frac{\partial {\tilde{\epsilon }}_t}{\partial \theta _i}-\frac{\partial \epsilon _t}{\partial \theta _i}\Big |\le K\rho ^t, \ \ \Big |\frac{1}{{\tilde{\sigma }}_t^2}\frac{\partial {\tilde{\sigma }}_t^2}{\partial \theta _i}-\frac{1}{\sigma _t^2}\frac{\partial \sigma _t^2}{\partial \theta _i}\Big |\nonumber \\\le & {} K\rho ^t \Big \{\Big |\frac{1}{\sigma _t^2}\frac{\partial \sigma _t^2}{\partial \theta _i}\Big |S_{t-1}+1 \Big \}. \end{aligned}$$
(7)

From the above, it can be obtained that

$$\begin{aligned} \Big |\frac{{\tilde{\epsilon }}_t^2}{{\tilde{\sigma }}_t^2}-\frac{\epsilon _t^2}{\sigma _t^2} \Big |\le K\rho ^t\Bigg (1+|\epsilon _t|+\frac{\epsilon _t^2}{\sigma _t^2}S_{t-1}\Bigg ) \end{aligned}$$
(8)

of which the proofs are omitted for brevity.

Proposition 4

Suppose that \((\mathbf{A}0)\)\((\mathbf{A}3)\) hold. Then, for any neighborhood \(\mathcal {N}(\theta _0)\subset \varTheta \) whose elements have components \(\alpha _i\) and \(\beta _j\) bounded below from zero, under \(H_0\),

$$\begin{aligned} \mathbb {E}\sup _{\theta \in \mathcal {N}(\theta _0)}|\epsilon _t|^4<\infty , \ \ \mathbb {E}\sup _{\theta \in \mathcal {N}(\theta _0)}\Big |\frac{\partial \epsilon _t}{\partial \theta _i} \Big |^4<\infty ,\ \ \mathbb {E}\sup _{\theta \in \mathcal {N}(\theta _0)}\Bigg |\frac{1}{\sigma _t^2}\frac{\partial \sigma _t^2}{\partial \theta _i}\Bigg |^4<\infty , \end{aligned}$$
(9)

and

$$\begin{aligned} \mathbb {E}\sup _{\theta \in \mathcal {N}(\theta _0)}|S_{t-1}|^4\le K(t+q-1)^3, \end{aligned}$$
(10)

Moreover, if \((\mathbf{A}0')\), \((\mathbf{A}1)\)\((\mathbf{A}3)\) hold,

$$\begin{aligned} \mathbb {E}\sup _{\theta \in \mathcal {N}(\theta _0)}|\epsilon _t|^6<\infty , \ \ \mathbb {E}\sup _{\theta \in \mathcal {N}(\theta _0)}\Big |\frac{\partial \epsilon _t}{\partial \theta _i} \Big |^6<\infty ,\ \ \mathbb {E}\sup _{\theta \in \mathcal {N}(\theta _0)}\Big |\frac{1}{\sigma _t^2}\frac{\partial \sigma _t^2}{\partial \theta _i}\Big |^6<\infty .\qquad \end{aligned}$$
(11)

Lemma 1

Under the same conditions in Theorem 3, we have

$$\begin{aligned}&\frac{1}{\sqrt{n}}\max _{v_n \le k\le n}\bigg \Vert \sum _{t=1}^k \partial _\theta {\tilde{l}}_t ({\hat{\theta }}_n) -\bigg (\sum _{t=1}^k \partial _\theta {l}_t (\theta _0)+k\mathcal {J}({\hat{\theta }}_n-\theta _0) \bigg )\bigg \Vert =o_\mathrm{P}(1). \end{aligned}$$

Proof

By the mean value theorem and Propositions 1 and 2, we get

$$\begin{aligned}&\frac{1}{\sqrt{n}}\max _{v_n \le k\le n}\bigg \Vert \sum _{t=1}^k \partial _\theta {\tilde{l}}_t ({\hat{\theta }}_n) -\bigg (\sum _{t=1}^k \partial _\theta {l}_t (\theta _0)+k\mathcal {J}({\hat{\theta }}_n-\theta _0) \bigg )\bigg \Vert \\&\quad \le \frac{1}{\sqrt{n}}\max _{v_n \le k\le n}\bigg \Vert \sum _{t=1}^k \partial _\theta {\tilde{l}}_t ({\hat{\theta }}_n) -\bigg (\sum _{t=1}^k \partial _\theta {\tilde{l}}_t (\theta _0)+k\mathcal {J}({\hat{\theta }}_n-\theta _0) \bigg )\bigg \Vert \\&\qquad +\frac{1}{\sqrt{n}}\max _{v_n \le k\le n}\big \Vert \sum _{t=1}^{k}\partial _\theta {\tilde{l}}_t(\theta _0)-\sum _{t=1}^{k}\partial _\theta {l}_t(\theta _0)\big \Vert \\&\quad \le \max _{v_n \le k\le n}\frac{k}{\sqrt{n}}\big \Vert \big (\partial _{\theta \theta }{\tilde{L}}_k ({\tilde{\theta }}_n)-\mathcal {J}\big )({\hat{\theta }}_n-\theta _0) \big \Vert +\max _{1\le k\le n}\frac{k}{\sqrt{n}}\Vert \varDelta _{1,k}\Vert \\&\quad \le \max _{1\le k\le n}\frac{k}{\sqrt{n}}\Vert \varDelta _{2,k}\Vert +\max _{1\le k\le n}\frac{k}{\sqrt{n}}\Vert \varDelta _{1,k}\Vert =o_{\mathrm {P}}(1). \end{aligned}$$

This completes the proof. \(\square \)

Lemma 2

Under the same conditions in Theorem 3, we have

$$\begin{aligned} \frac{1}{\sqrt{n}}\max _{v_n \le k\le n}\Bigg \Vert \sum _{t=1}^{k}\partial _\theta {\tilde{l}}_t({\hat{\theta }}_n)-\left( \sum _{t=1}^{k}\partial _\theta l_t(\theta _0)-\frac{k}{n}\sum _{t=1}^{n}\partial _\theta l_t(\theta _0) \right) \Bigg \Vert =o_{\mathrm {P}}(1). \end{aligned}$$

Proof

Owing to Propositions 1 and 2 and Lemma 1,

$$\begin{aligned}&\frac{1}{\sqrt{n}}\max _{v_n \le k\le n}\Bigg \Vert \sum _{t=1}^{k}\partial _\theta {\tilde{l}}_t({\hat{\theta }}_n)-\left( \sum _{t=1}^{k}\partial _\theta l_t(\theta _0)-\frac{k}{n}\sum _{t=1}^{n}\partial _\theta l_t(\theta _0) \right) \Bigg \Vert \\&\quad \le \frac{1}{\sqrt{n}}\max _{v_n \le k\le n}\Big \Vert \sum _{t=1}^k \partial _\theta {\tilde{l}}_t ({\hat{\theta }}_n) -\Big (\sum _{t=1}^k \partial _\theta {l}_t (\theta _0)+k\mathcal {J}({\hat{\theta }}_n-\theta _0) \Big )\Big \Vert \\&\qquad +\,\max _{v_n \le k\le n}\frac{k}{\sqrt{n}}\Big \Vert \frac{1}{n}\sum _{t=1}^{n}\partial _\theta l_t(\theta _0)+\mathcal {J}({\hat{\theta }}_n-\theta _0)\Big \Vert \\&\quad \le o_{\mathrm {P}}(1)+\max _{1\le k\le n}\frac{k}{\sqrt{n}}\Vert \varDelta _{1,k}+\varDelta _{2,k}\Vert =o_{\mathrm {P}}(1). \end{aligned}$$

\(\square \)

Lemma 3

Suppose that \(\mathbf{(A0)}-\mathbf{(A3)}\) hold. Then, we have that as \(n\rightarrow \infty \),

$$\begin{aligned}&\frac{1}{n}\sum _{t=1}^{n}\frac{\partial _\theta \tilde{\sigma }_t^2}{{\tilde{\sigma }}_t^2}\frac{\partial _{\theta ^T}\tilde{\sigma }_t^2}{{\tilde{\sigma }}_t^2}({\hat{\theta }}_n){\mathop {\longrightarrow }\limits ^{a.s.}}\mathbb {E}\frac{\partial _\theta \sigma _t^2}{\sigma _t^2}\frac{\partial _{\theta ^T}\sigma _t^2}{\sigma _t^2}(\theta _0), \\&\frac{1}{n}\sum _{t=1}^{n}\frac{\partial _\theta \tilde{\sigma }_t^2}{{\tilde{\sigma }}_t^2}\frac{\partial _{\theta ^T}\tilde{\epsilon }_t}{{\tilde{\sigma }}_t}({\hat{\theta }}_n){\mathop {\longrightarrow }\limits ^{a.s.}}\mathbb {E}\frac{\partial _\theta \sigma _t^2}{\sigma _t^2}\frac{\partial _{\theta ^T}\epsilon _t}{\sigma _t}(\theta _0), \\&\frac{1}{n}\sum _{t=1}^{n}\frac{\partial _\theta \tilde{\epsilon }_t}{{\tilde{\sigma }}_t}\frac{\partial _{\theta ^T}\tilde{\epsilon }_t}{{\tilde{\sigma }}_t}({\hat{\theta }}_n){\mathop {\longrightarrow }\limits ^{a.s.}}\mathbb {E}\frac{\partial _\theta \epsilon _t}{\sigma _t}\frac{\partial _{\theta ^T}\epsilon _t}{\sigma _t}(\theta _0), \end{aligned}$$

and

$$\begin{aligned} \frac{1}{n}\sum _{t=1}^{n}\frac{{\tilde{\epsilon }}_t^4}{{\tilde{\sigma }}_t^4}{\mathop {\longrightarrow }\limits ^{a.s.}}\mathbb {E}\eta _t^4. \end{aligned}$$

Proof

Due to the strong consistency of \({\hat{\theta }}_n\), it suffices to prove that for \(i=1,2,3,4\),

$$\begin{aligned} \Big \Vert \frac{1}{n}\sum _{t=1}^{n}(\tilde{P}_{i,t}-P_{i,t})\Big \Vert \ \ \text {and} \ \ \Big \Vert \frac{1}{n}\sum _{t=1}^{n}P_{i,t}-\mathbb {E}P_{i,t}\Big \Vert \end{aligned}$$

converge to 0 a.s. uniformly over any neighborhood \(\mathcal {N}(\theta _0)\), where

$$\begin{aligned} P_{1,t}=\frac{\partial _\theta \sigma _t^2}{\sigma _t^2}\frac{\partial _{\theta ^T}\sigma _t^2}{\sigma _t^2}, \ \ P_{2,t}=\frac{\partial _\theta \sigma _t^2}{\sigma _t^2}\frac{\partial _{\theta ^T}\epsilon _t}{\sigma _t}, \ \ P_{3,t}=\frac{\partial _\theta \epsilon _t}{\sigma _t}\frac{\partial _{\theta ^T}\epsilon _t}{\sigma _t}, \ \ \text {and} \ \ P_{4,t}=\frac{\epsilon _t^4}{\sigma _t^4}, \end{aligned}$$

and \(\tilde{P}_{i,t}\), \(i=1,2,3,4\), are similarly defined with \(\sigma _t\), \(\epsilon _t\), \(\partial _\theta \sigma _t\) and \(\partial _\theta \epsilon _t\) replaced by \({\tilde{\sigma }}_t\), \({\tilde{\epsilon }}_t\), \(\partial _\theta {\tilde{\sigma }}_t\) and \(\partial _\theta {\tilde{\epsilon }}_t\), respectively.

Using Hölder’s inequality and the fact that \(\sigma _t^2\ge \inf _{\theta \in \varTheta }w\) and (9), we can see that \(\mathbb {E}[\sup _{\theta \in \mathcal {N}(\theta _0)}|P_{i,t}|]<\infty \), \(i=1,2,3,4\). Hence, \(\sup _{\theta \in \mathcal {N}(\theta _0)}\Big \Vert \frac{1}{n}\sum _{t=1}^{n}P_{i,t}-\mathbb {E}P_{i,t}\Big \Vert =o(1)\) a.s. for \(i=1,2,3,4\), owing to Theorem 2.7 of Straumann and Mikosch (2006).

Note that owing to (7),

$$\begin{aligned} \Big |\frac{1}{{\tilde{\sigma }}_t^2}\frac{\partial {\tilde{\sigma }}_t^2}{\partial \theta _i}\frac{1}{{\tilde{\sigma }}_t^2}\frac{\partial {\tilde{\sigma }}_t^2}{\partial \theta _j}-\frac{1}{\sigma _t^2}\frac{\partial \sigma _t^2}{\partial \theta _i}\frac{1}{\sigma _t^2}\frac{\partial \sigma _t^2}{\partial \theta _j}\Big |\le & {} \Big |\frac{1}{{\tilde{\sigma }}_t^2}\frac{\partial {\tilde{\sigma }}_t^2}{\partial \theta _i}-\frac{1}{\sigma _t^2}\frac{\partial \sigma _t^2}{\partial \theta _i}\Big |\Big |\frac{1}{{\tilde{\sigma }}_t^2}\frac{\partial {\tilde{\sigma }}_t^2}{\partial \theta _j}-\frac{1}{\sigma _t^2}\frac{\partial \sigma _t^2}{\partial \theta _j}\Big |\\&+\,\Big |\frac{1}{\sigma _t^2}\frac{\partial \sigma _t^2}{\partial \theta _i}\Big |\Big |\frac{1}{{\tilde{\sigma }}_t^2}\frac{\partial {\tilde{\sigma }}_t^2}{\partial \theta _j}-\frac{1}{\sigma _t^2}\frac{\partial \sigma _t^2}{\partial \theta _j}\Big |\\&+\,\Big |\frac{1}{{\tilde{\sigma }}_t^2}\frac{\partial {\tilde{\sigma }}_t^2}{\partial \theta _i}-\frac{1}{\sigma _t^2}\frac{\partial \sigma _t^2}{\partial \theta _i}\Big |\Big |\frac{1}{\sigma _t^2}\frac{\partial \sigma _t^2}{\partial \theta _j}\Big |\\\le & {} K\rho ^t \Bigg \{\Big |\frac{1}{\sigma _t^2}\frac{\partial \sigma _t^2}{\partial \theta _i}\Big |S_{t-1}+1 \Bigg \}\Bigg \{\Big |\frac{1}{\sigma _t^2}\frac{\partial \sigma _t^2}{\partial \theta _j }\Big |S_{t-1}\\&+\,1 \Bigg \}\\:= & {} K\rho ^t Q_{t,i,j}. \end{aligned}$$

Using (9), (10), Markov’s inequality, and Hölder’s inequality, we have that for each \(\epsilon >0\),

$$\begin{aligned} \sum _{t=1}^{\infty }\mathrm {P}\Big ( \rho ^t\sup _{\theta \in \mathcal {N}(\theta _0)}Q_{t,i,j}>\epsilon \Big )\le & {} \frac{1}{{\epsilon }}\sum _{t=1}^{\infty }\rho ^{t}\mathbb {E}\Big |\sup _{\theta \in \mathcal {N}(\theta _0)}Q_{t,i,j}\Big |\\\le & {} K\sum _{t=1}^{\infty }(t+q-1)^{3/2}\rho ^t<\infty , \end{aligned}$$

which implies \(\rho ^t\sup _{\theta \in \mathcal {N}(\theta _0)}Q_{t,i,j}=o(1)\) a.s.. Therefore, \(\sup _{\theta \in \mathcal {N}(\theta _0)}\Big \Vert \frac{1}{n}\sum _{t=1}^{n}(\tilde{P}_{1,t}-P_{1,t})\Big \Vert =o(1)\) a.s.. Since the cases of \(i=2,3,4\) can be similarly handled, the lemma is established. \(\square \)

Lemma 4

Let \(R_{i,t}\), \(i=1,2\), be those in (6) and suppose that the conditions in Theorem 4, we have

$$\begin{aligned} \frac{1}{\sqrt{n}}\max _{v_n \le k\le n}\Big |\sum _{t=1}^{k}R_{i,t}-\frac{k}{n}\sum _{t=1}^{n}R_{i,t} \Big |=o_{\mathrm {P}}(1). \end{aligned}$$

Proof

First, we deal with \(R_{1,t}\). For any \(\delta >0\), neighborhood \(N(\theta _0)\) satisfying (9), we have that

$$\begin{aligned} \mathrm {P}\Big ( \frac{1}{\sqrt{n}}\sum _{t=1}^{n}\Big |\Big (\frac{{\tilde{\epsilon }}_t^2}{{\tilde{\sigma }}_t^2}-\frac{\epsilon _t^2}{\sigma _t^2}\Big )({\hat{\theta }}_n)\Big |>\delta \Big )\le & {} \mathrm {P}\Big ({\hat{\theta }}_n\in \varTheta /N(\theta _0)\Big )\\&+\,\mathrm {P}\Big (\frac{1}{\sqrt{n}}\sum _{t=1}^{n}\sup _{\theta \in \mathcal {N}(\theta _0)}\Big |\frac{{\tilde{\epsilon }}_t^2}{{\tilde{\sigma }}_t^2}-\frac{\epsilon _t^2}{\sigma _t^2}\Big |>\delta \Big ) \end{aligned}$$

and by (8), (9) and the fact \(\sup _{\theta \in \mathcal {N}(\theta _0)}\frac{1}{\sigma _t^2(\theta )}\le \sup _{\theta \in \mathcal {N}(\theta _0)}\frac{1}{\omega }<\infty \) and Hölder’s inequality

$$\begin{aligned}&\mathbb {E}\Big (\frac{1}{\sqrt{n}}\sum _{t=1}^{n}\sup _{\theta \in \mathcal {N}(\theta _0)}\Big |\frac{{\tilde{\epsilon }}_t^2}{{\tilde{\sigma }}_t^2}-\frac{\epsilon _t^2}{\sigma _t^2}\Big |\Big )\\&\quad \le \frac{1}{\sqrt{n}}\sum _{t=1}^{n}K\rho ^t\cdot \mathbb {E}\sup _{\theta \in \mathcal {N}(\theta _0)}\Bigg (1+|\epsilon _t|+\frac{\epsilon _t^2}{\sigma _t^2}S_{t-1}\Bigg )\\&\quad \le \frac{1}{\sqrt{n}}\sum _{t=1}^{n}K\rho ^t\bigg (1+\mathbb {E}\sup _{\theta \in \mathcal {N}(\theta _0)}|\epsilon _t|+\Big (\mathbb {E}\sup _{\theta \in \mathcal {N}(\theta _0)}|\epsilon _t|^4\Big )^{1/2}\Big (\mathbb {E}\sup _{\theta \in \mathcal {N}(\theta _0)}|S_{t-1}|^2\Big )^{1/2}\bigg )\\&\quad \le \Big (1+\mathbb {E}\sup _{\theta \in \mathcal {N}(\theta _0)}|\epsilon _1| \Big )\frac{1}{\sqrt{n}}\sum _{t=1}^{n}K\rho ^t+\Big (\mathbb {E}\sup _{\theta \in \mathcal {N}(\theta _0)}|\epsilon _1|^4\Big )^{1/2}\frac{1}{\sqrt{n}}\sum _{t=1}^{n}K\rho ^t(t{+}q{-}1)\\&\qquad \longrightarrow 0, \ \ n\rightarrow \infty \end{aligned}$$

which imply with Markov’s inequality and the fact \({\hat{\theta }}_n\rightarrow \theta _0\) a.s.

$$\begin{aligned} \frac{1}{\sqrt{n}}\max _{v_n \le k\le n}\sum _{t=1}^{k}\Big |\Big (\frac{{\tilde{\epsilon }}_t^2}{{\tilde{\sigma }}_t^2}-\frac{\epsilon _t^2}{\sigma _t^2}\Big )({\hat{\theta }}_n)\Big |\le \frac{1}{\sqrt{n}}\sum _{t=1}^{n}\Big |\Big (\frac{{\tilde{\epsilon }}_t^2}{{\tilde{\sigma }}_t^2}-\frac{\epsilon _t^2}{\sigma _t^2}\Big )({\hat{\theta }}_n)\Big |=o_{\mathrm {P}}(1). \end{aligned}$$
(12)

Next, we deal with \(R_{2,t}\). By the mean value theorem, we have

$$\begin{aligned} \Big (\frac{\epsilon _t^2}{\sigma _t^2}({\hat{\theta }}_n)-\frac{\epsilon _t^2}{\sigma _t^2}(\theta _0)\Big )= & {} ({\hat{\theta }}_n-\theta _0)^T\Big ( \frac{2\epsilon _t\partial _\theta \epsilon _t}{\sigma _t^2}-\frac{\epsilon _t^2\partial _\theta \sigma _t^2}{\sigma _t^4}\Big )({\tilde{\theta }}_n)\nonumber \\= & {} ({\hat{\theta }}_n-\theta _0)^T\Big ( \frac{2\epsilon _t\partial _\theta \epsilon _t}{\sigma _t^2}-\frac{\epsilon _t^2\partial _\theta \sigma _t^2}{\sigma _t^4}\Big )(\theta _0)\nonumber \\&+\,({\hat{\theta }}_n-\theta _0)^T\Bigg \{\Bigg ( \frac{2\epsilon _t\partial _\theta \epsilon _t}{\sigma _t^2}-\frac{\epsilon _t^2\partial _\theta \sigma _t^2}{\sigma _t^4}\Big )({\tilde{\theta }}_n)\nonumber \\&-\,\Bigg ( \frac{2\epsilon _t\partial _\theta \epsilon _t}{\sigma _t^2}-\frac{\epsilon _t^2\partial _\theta \sigma _t^2}{\sigma _t^4}\Bigg )(\theta _0)\Bigg \} \end{aligned}$$

where \({\tilde{\theta }}_n\) is an appropriate intermediate point between \({\hat{\theta }}_n\) and \(\theta _0\). By using (9), one can readily check that \(\mathbb {E}\Big \Vert \Big ( \frac{2\epsilon _t\partial _\theta \epsilon _t}{\sigma _t^2}-\frac{\epsilon _t^2\partial _\theta \sigma _t^2}{\sigma _t^4}\Big )(\theta _0)\Big \Vert <\infty \) and, \(\Big ( \frac{2\epsilon _t\partial _\theta \epsilon _t}{\sigma _t^2}-\frac{\epsilon _t^2\partial _\theta \sigma _t^2}{\sigma _t^4}\Big )\) is stationary and ergodic. Thus the invariance principle for stationary processes, we have

$$\begin{aligned}&\frac{1}{\sqrt{n}}\max _{v_n \le k\le n}\Bigg \Vert \sum _{t=1}^{k}\Big ( \frac{2\epsilon _t\partial _\theta \epsilon _t}{\sigma _t^2}-\frac{\epsilon _t^2\partial _\theta \sigma _t^2}{\sigma _t^4}\Big )(\theta _0) -\frac{k}{n}\sum _{t=1}^{n}\Bigg ( \frac{2\epsilon _t\partial _\theta \epsilon _t}{\sigma _t^2}-\frac{\epsilon _t^2\partial _\theta \sigma _t^2}{\sigma _t^4}\Bigg )(\theta _0)\Bigg \Vert \\&\quad =\frac{1}{\sqrt{n}}\max _{v_n \le k\le n}\bigg \Vert \sum _{t=1}^{k}\Bigg \{\Bigg ( \frac{2\epsilon _t\partial _\theta \epsilon _t}{\sigma _t^2}-\frac{\epsilon _t^2\partial _\theta \sigma _t^2}{\sigma _t^4}\Bigg )(\theta _0) -\mathbb {E}\Bigg ( \frac{2\epsilon _t\partial _\theta \epsilon _t}{\sigma _t^2}-\frac{\epsilon _t^2\partial _\theta \sigma _t^2}{\sigma _t^4}\Bigg )(\theta _0)\Bigg \}\\&\qquad -\,\frac{k}{n}\sum _{t=1}^{n}\Bigg \{\Bigg ( \frac{2\epsilon _t\partial _\theta \epsilon _t}{\sigma _t^2}-\frac{\epsilon _t^2\partial _\theta \sigma _t^2}{\sigma _t^4}\Bigg )(\theta _0) -\mathbb {E}\Bigg ( \frac{2\epsilon _t\partial _\theta \epsilon _t}{\sigma _t^2}-\frac{\epsilon _t^2\partial _\theta \sigma _t^2}{\sigma _t^4}\Bigg )(\theta _0)\Bigg \}\bigg \Vert \\&\quad =O_{\mathrm {P}}(1) \end{aligned}$$

which implies with the fact \({\hat{\theta }}_n\rightarrow \theta _0\) a.s.,

$$\begin{aligned}&\frac{1}{\sqrt{n}}\max _{v_n \le k\le n}\bigg \Vert \sum _{t=1}^{k}({\hat{\theta }}_n-\theta _0)^T\Big ( \frac{2\epsilon _t\partial _\theta \epsilon _t}{\sigma _t^2}-\frac{\epsilon _t^2\partial _\theta \sigma _t^2}{\sigma _t^4}\Big )(\theta _0)\nonumber \\&\qquad -\frac{k}{n}\sum _{t=1}^{n}({\hat{\theta }}_n-\theta _0)^T\Big ( \frac{2\epsilon _t\partial _\theta \epsilon _t}{\sigma _t^2}-\frac{\epsilon _t^2\partial _\theta \sigma _t^2}{\sigma _t^4}\Big )(\theta _0)\bigg \Vert \nonumber \\&\quad =o_{\mathrm {P}}(1). \end{aligned}$$
(13)

Since \(\mathbb {E}\Big \Vert \Big ( \frac{2\epsilon _t\partial _\theta \epsilon _t}{\sigma _t^2}-\frac{\epsilon _t^2\partial _\theta \sigma _t^2}{\sigma _t^4}\Big )(\theta _0)\Big \Vert <\infty \) and \(\Big ( \frac{2\epsilon _t\partial _\theta \epsilon _t}{\sigma _t^2}-\frac{\epsilon _t^2\partial _\theta \sigma _t^2}{\sigma _t^4}\Big )\) is stationary and ergodic, the convergence of \({\tilde{\theta }}_n\) to \(\theta _0\), almost surely, implies

$$\begin{aligned}&\max _{v_n \le k\le n}\Bigg \Vert \frac{1}{k}\sum _{t=1}^{k} \Bigg ( \frac{2\epsilon _t\partial _\theta \epsilon _t}{\sigma _t^2}-\frac{\epsilon _t^2\partial _\theta \sigma _t^2}{\sigma _t^4}\Bigg )({\tilde{\theta }}_n)-\frac{1}{k}\sum _{t=1}^{k}\Bigg ( \frac{2\epsilon _t\partial _\theta \epsilon _t}{\sigma _t^2}-\frac{\epsilon _t^2\partial _\theta \sigma _t^2}{\sigma _t^4}\Bigg )(\theta _0)\Bigg \Vert \\&\quad =o(1),\ \ a.s., \end{aligned}$$

which implies with the fact \(\sqrt{n}({\hat{\theta }}_n-\theta _0)=O_{\mathrm {P}}(1)\) (cf. Theorem 2),

$$\begin{aligned}&\frac{1}{\sqrt{n}}\max _{v_n \le k\le n}\Big \Vert \sum _{t=1}^{k}({\hat{\theta }}_n-\theta _0)^T\Big \{ \Big ( \frac{2\epsilon _t\partial _\theta \epsilon _t}{\sigma _t^2}-\frac{\epsilon _t^2\partial _\theta \sigma _t^2}{\sigma _t^4}\Big )({\tilde{\theta }}_n)\nonumber \\&\qquad -\Big ( \frac{2\epsilon _t\partial _\theta \epsilon _t}{\sigma _t^2}-\frac{\epsilon _t^2\partial _\theta \sigma _t^2}{\sigma _t^4}\Big )(\theta _0)\Big \}\Big \Vert \nonumber \\&\quad \le \Vert \sqrt{n}({\hat{\theta }}_n-\theta _0)\Vert \max _{v_n \le k\le n}\Big \Vert \frac{1}{k}\sum _{t=1}^{k}\Big \{ \Big ( \frac{2\epsilon _t\partial _\theta \epsilon _t}{\sigma _t^2}-\frac{\epsilon _t^2\partial _\theta \sigma _t^2}{\sigma _t^4}\Big )({\tilde{\theta }}_n)\nonumber \\&\qquad -\Big ( \frac{2\epsilon _t\partial _\theta \epsilon _t}{\sigma _t^2}-\frac{\epsilon _t^2\partial _\theta \sigma _t^2}{\sigma _t^4}\Big )(\theta _0)\Big \}\Big \Vert \nonumber \\&\quad =o_{\mathrm {P}}(1). \end{aligned}$$
(14)

Thus, combining (13) and (14), we obtain

$$\begin{aligned} \frac{1}{\sqrt{n}}\max _{v_n \le k\le n}\Big |\sum _{t=1}^{k}R_{2,t}-\frac{k}{n}\sum _{t=1}^{n}R_{2,t} \Big |=o_{\mathrm {P}}(1). \end{aligned}$$

This together with (12) validates the lemma. \(\square \)

Lemma 5

Under the same conditions in Theorem 4, we have

$$\begin{aligned} {\hat{\tau }}_n^2=\frac{1}{n}\sum _{t=1}^{n}{\hat{\eta }}_t^4-\Bigg (\frac{1}{n}\sum _{t=1}^{n}{\hat{\eta }}_t^2\Bigg )^2{\mathop {\longrightarrow }\limits ^{\mathrm {P}}}\mathrm {Var}(\eta _1^2). \end{aligned}$$

Proof

To show that \(\frac{1}{n}\sum _{t=1}^n {\hat{\eta }}_t^2{\mathop {\longrightarrow }\limits ^{\mathrm {P}}}\mathbb {E}(\eta _1^2)\), we verity that

$$\begin{aligned} \Big |\frac{1}{n}\sum _{t=1}^{n}{\hat{\eta }}_t^2-\frac{1}{n}\sum _{t=1}^{n}\eta _t^2\Big |\le \Big |\frac{1}{n}\sum _{t=1}^{n}R_{1,t}\Big |+\Big |\frac{1}{n}\sum _{t=1}^{n}R_{2,t}\Big |=o_{\mathrm {P}}(1). \end{aligned}$$
(15)

Since \(\mathbb {E}\frac{\epsilon _t^2}{\sigma _t^2}(\theta _0)=\mathbb {E}\eta _t^2<\infty \) and \(\frac{\epsilon _t^2}{\sigma _t^2}(\theta )\) is stationary and ergodic and \({\hat{\theta }}_n\rightarrow \theta _0\) a.s., we have

$$\begin{aligned} \Big |\frac{1}{n}\sum _{t=1}^{n}R_{2,t}\Big |\le & {} \Big |\frac{1}{n}\sum _{t=1}^{n}\frac{\epsilon _t^2}{\sigma _t^2}({\hat{\theta }}_n)-\frac{1}{n}\sum _{t=1}^{n}\frac{\epsilon _t^2}{\sigma _t^2}(\theta _0)\Big |\longrightarrow 0 \ \ a.s. \end{aligned}$$
(16)

Further, \(\frac{1}{\sqrt{n}}\sum _{t=1}^{n}|R_{1,t}|=o_{\mathrm {P}}(1)\) as we have in proof of Lemma 4. Hence, combining this with (16), we can obtain (15), which in turn implies \(\frac{1}{n}\sum _{t=1}^n {\hat{\eta }}_t^2{\mathop {\longrightarrow }\limits ^{\mathrm {P}}}\mathbb {E}(\eta _1^2)\).

Now, to show that \(\frac{1}{n}\sum _{t=1}^{n}{\hat{\eta }}_t^4{\mathop {\longrightarrow }\limits ^{\mathrm {P}}}\mathbb {E}\eta _1^4\), we first verify that

$$\begin{aligned} \frac{1}{n}\sum _{t=1}^{n}({\hat{\eta }}_t^2-\eta _t^2)^2\le \frac{2}{n}\Bigg (\sum _{t=1}^{n}|R_{1,t}|^2+\sum _{t=1}^{n}|R_{2,t}|^2\Bigg )=o_{\mathrm {P}}(1). \end{aligned}$$
(17)

For \(|R_{1,t}|^2\), note that by Hölder inequality and (11)

$$\begin{aligned} \mathbb {E}\sup _{\theta \in \mathcal {N}(\theta _0)}\frac{\epsilon _t^4}{\sigma _t^4}S_{t-1}^2\le & {} K \Big (\mathbb {E}\sup _{\theta \in \mathcal {N}(\theta _0)}|\epsilon _t|^6\Big )^{2/3}\Big (\mathbb {E}\sup _{\theta \in \mathcal {N}(\theta _0)}|S_{t-1}|^6\Big )^{1/3}\\\le & {} K \Big (\mathbb {E}\sup _{\theta \in \mathcal {N}(\theta _0)}|\epsilon _1|^6\Big )^{2/3}(t+q-1)^2 \end{aligned}$$

Thus, similar to (12), we can have easily

$$\begin{aligned} \frac{1}{n}\sum _{t=1}^{n}|R_{1,t}|^2=o_{\mathrm {P}}(1). \end{aligned}$$
(18)

By using (11), one can readily check that \(\mathbb {E}\sup _{\theta \in \mathcal {N}(\theta _0)}\Big |\frac{\epsilon _t^4}{\sigma _t^4}\Big |<\infty \), and thus, by the ergodic theorem

$$\begin{aligned} \frac{1}{n}\sum _{t=1}^{n}\sup _{\theta \in \mathcal {N}(\theta _0)}\Bigg |\frac{\epsilon _t^2}{\sigma _t^2}(\theta )-\frac{\epsilon _t^2}{\sigma _t^2}(\theta _0) \Bigg |^2\longrightarrow \mathbb {E}\sup _{\theta \in \mathcal {N}(\theta _0)}\Bigg |\frac{\epsilon _t^2}{\sigma _t^2}(\theta )-\frac{\epsilon _t^2}{\sigma _t^2}(\theta _0) \Bigg |^2 \ \ a.s. \end{aligned}$$

Hence, for any \(\delta >0\), there exist a neighborhood \(N_r(\theta _0)=\{\theta :\Vert \theta - \theta _0\Vert <r(\delta )\}\) and \(N_1>1\) such that

$$\begin{aligned} \frac{1}{n}\sum _{t=1}^{n}\sup _{\theta \in N_r(\theta _0)}\Bigg |\frac{\epsilon _t^2}{\sigma _t^2}(\theta )-\frac{\epsilon _t^2}{\sigma _t^2}(\theta _0) \Bigg |^2\le \delta \ \ a.s. \ \ \text {for all} \ \ n\ge N_1. \end{aligned}$$

Further, since \({\hat{\theta }}_n\rightarrow \theta _0\) a.s., there exists \(N_2\ge 1\) such that \(\Vert {\hat{\theta }}_n-\theta _0\Vert <r(\delta )\), almost surely, for \(n\ge N_2\). Thus for any \(\delta >0\), all \(n\ge \max \{N_1,N_2\}\), almost surely

$$\begin{aligned} \frac{1}{n}\sum _{t=1}^{n}|R_{2,t}|^2\le \frac{1}{n}\sum _{t=1}^{n}\sup _{\theta \in N_r(\theta _0)}\Bigg |\frac{\epsilon _t^2}{\sigma _t^2}(\theta )-\frac{\epsilon _t^2}{\sigma _t^2}(\theta _0) \Bigg |^2\le \delta . \end{aligned}$$
(19)

Thus, combining (18) and (19), we obtain (17). Therefore

$$\begin{aligned} \Big |\frac{1}{n}\sum _{t=1}^{n}{\hat{\eta }}_t^4-\frac{1}{n}\sum _{t=1}^{n}\eta _t^4\Big |\le & {} \Big (\frac{1}{n}\sum _{t=1}^{n}({\hat{\eta }}_t^2-\eta _t^2)^2 \Big )^{1/2}\Big (\frac{1}{n}\sum _{t=1}^{n}({\hat{\eta }}_t^2+\eta _t^2)^2 \Big )^{1/2}\\\le & {} \Big (\frac{1}{n}\sum _{t=1}^{n}({\hat{\eta }}_t^2-\eta _t^2)^2 \Big )^{1/2}\Big (\frac{2}{n}\sum _{t=1}^{n}({\hat{\eta }}_t^2-\eta _t^2)^2+\frac{8}{n}\sum _{t=1}^{n}\eta _t^4 \Big )^{1/2}\\= & {} o_{\mathrm {P}}(1)(o_{\mathrm {P}}(1)+O_{\mathrm {P}}(1))=o_{\mathrm {P}}(1), \end{aligned}$$

and thus, \(\frac{1}{n}\sum _{t=1}^{n}{\hat{\eta }}_t^4{\mathop {\longrightarrow }\limits ^{\mathrm {P}}}\mathbb {E}\eta _1^4\). Hence, the lemma is validated. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, H., Lee, S. On score vector- and residual-based CUSUM tests in ARMA–GARCH models. Stat Methods Appl 27, 385–406 (2018). https://doi.org/10.1007/s10260-017-0408-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10260-017-0408-9

Keywords

Navigation