Skip to main content
Log in

The Number of Circles of a Maximum State of a Plane Graph with Applications

  • Published:
Acta Mathematicae Applicatae Sinica, English Series Aims and scope Submit manuscript

Abstract

Motivated by the connection with the genus of the corresponding link and its application on DNA polyhedral links, in this paper, we introduce a parameter smax(G), which is the maximum number of circles of states of the link diagram D(G) corresponding to a plane (positive) graph G. We show that smax(G) does not depend on the embedding of G and if G is a 4-edge-connected plane graph then smax(G) is equal to the number of faces of G, which cover the results of S. Y. Liu and H. P. Zhang as special cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aigner, M. A Course in Enumeration. Springer Verlag, Berlin, 2007

    MATH  Google Scholar 

  2. Bollobás, B., Riordan, O. A polynomial of graphs on orientable surfaces. Proc. London Math. Soc., 83: 513–531 (2001)

    Article  MathSciNet  Google Scholar 

  3. Bollobás, B., Riordan, O. A polynomial of graphs on surfaces. Math. Ann., 323(1): 81–96 (2002)

    Article  MathSciNet  Google Scholar 

  4. Bondy, J.A., Murty, U.S.R. Graph Theory with Applications. American Elsevier Publishing Co., Inc., New York, 1976.

    Book  Google Scholar 

  5. Cheng, X.-S., Jin, X. The braid index of complicated DNA polyhedral links. PLoS One, 7(11): e48968 (2012)

    Article  Google Scholar 

  6. Cheng, X.-S., Liu, S.Y., Zhang, H.P., Qiu, W.-Y. Fabrication of a family of pyramidal links and their genus. MATCH Commun. Math. Comput. Chem., 63: 623–636 (2010)

    MathSciNet  MATH  Google Scholar 

  7. Crowell, R.H. Genus of alternating link types. Ann. Math., 69: 258–275 (1959)

    Article  MathSciNet  Google Scholar 

  8. Endo, T. The link component number of suspended trees. Graphs and Combinatorics, 26: 483–490 (2010)

    Article  MathSciNet  Google Scholar 

  9. Gabai, D. Genera of the alternating links. Duke Math. J., 53: 677–681 (1986)

    Article  MathSciNet  Google Scholar 

  10. Godsil, C., Royle, G. Algebraic Graph Theory. Springer Verlag, New York, 2001

    Book  Google Scholar 

  11. He, Y., Su, M., Fang, P., Zhang, C., Ribbe, A.E., Jiang, W., Mao, C. On the chirality of self-assembled DNA octahedra. Angew. Chem. Int. Ed., 49: 748–751 (2010)

    Article  Google Scholar 

  12. He, Y., Ye, T., Su, M., Zhang, C., Ribbe, A. E., Jiang, W., Mao C. Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra. Nature, 452: 198–202 (2008)

    Article  Google Scholar 

  13. Hendrickson B. Conditions for unique graph realizations. SIAM J. Comput., 21(1): 65–84 (1992)

    Article  MathSciNet  Google Scholar 

  14. Jacobs, D. J., Hendrickson, B. An algorithm for two-dimensional rigidity percolation: the pebble game. J. Comp. Phys., 137: 346–365 (1997)

    Article  MathSciNet  Google Scholar 

  15. Jaeger, F. Tutte polynomials and link polynomials. Proc. Amer. Math. Soc., 103: 647–654 (1988)

    Article  MathSciNet  Google Scholar 

  16. Jiang, L., Jin, X., Deng, K. Determining the component number of links corresponding to triangular and honeycomb lattices. J. Knot Theory Ramifications, 21(2): 1250018 (2012)

    Article  MathSciNet  Google Scholar 

  17. Jin, X., Dong, F.M., Tay, E.G. Determining the component number of links corresponding to lattices. J. Knot Theory Ramifications, 18(12): 1711–1726 (2009)

    Article  MathSciNet  Google Scholar 

  18. Jin, X., Dong, F.M., Tay, E.G. On graphs determining links with maximal number of components via medial construction. Discrete Appl. Math., 157: 3099–3110 (2009)

    Article  MathSciNet  Google Scholar 

  19. Kim, D., Lee, J. Some invariants of pretzel links. Bull. Austral. Math. Soc., 75: 253–271 (2007)

    Article  MathSciNet  Google Scholar 

  20. Lin, C., Liu, Y., Yan, H. Designer DNA Nanoarchitectures. Biochemistry, 48(8): 1663–1674 (2009)

    Article  Google Scholar 

  21. Lin, Y., Noble, S.D., Jin, X., Cheng, W. On plane graphs with link component number equal to the nullity. Discrete Appl. Math., 160: 1369–1375 (2012)

    Article  MathSciNet  Google Scholar 

  22. Liu, S.Y., Zhang, H.P. Genera of the links derived from 2-connected plane graphs. J. Knot Theory Ramifications, 21(14): 1250129 (2012)

    Article  MathSciNet  Google Scholar 

  23. Mphako, E.G. The component number of links from graphs. Proc. Edinb. Math. Soc., 45: 723–730 (2002)

    Article  MathSciNet  Google Scholar 

  24. Murasugi, K. On the genus of the alternating knot, I, II. J. Math. Soc. Jpn., 10: 94–105, 235–248 (1958)

    MathSciNet  MATH  Google Scholar 

  25. Murasugi, K. On a certain numerical invariant of link types. Trans. Amer. Math. Soc., 117: 387–422 (1965)

    Article  MathSciNet  Google Scholar 

  26. Murasugi, K. Knot Theory and Its Applications. Birkhauser, Boston, Inc., Boston, MA, 1996

    MATH  Google Scholar 

  27. Murasugi, K., Stoimenow, A. The Alexander polynomial of planar even valence graphs. Adv. in Appl. Math., 31: 440–462 (2003)

    Article  MathSciNet  Google Scholar 

  28. Nakamura, T., Nakanishi, Y., Satoh, S., Tomiyama, Y. The state numbers of a virtual knot. J. Knot Theory Ramifications, 23(3): 1450016 (2014)

    Article  MathSciNet  Google Scholar 

  29. Pisanski, T., Tucker, T.W., Žitnik, A. Straight-ahead walks in Eulerian graphs. Discrete Math., 281: 237–246 (2004)

    Article  MathSciNet  Google Scholar 

  30. Sarmiento, I. Transition polynomials. Discrete Math., 302: 254–266 (2005)

    Article  MathSciNet  Google Scholar 

  31. Seifert, H. Über das Geschlecht von Knoten. Math. Ann., 110: 571–592 (1935)

    Article  MathSciNet  Google Scholar 

  32. Shank, H. The theory of left-right paths. In: A. Penfold Street, ed. by W.D. Wallis, Combinatorial Math. III, Lecture Notes in Math. 452, Springer, Berlin, 1975, 42–54

    Google Scholar 

  33. Yamada, S. The minimal number of Seifert circles equals the braid index of a link. Invent. Math., 89: 347–356 (1987)

    Article  MathSciNet  Google Scholar 

  34. Zhang, C., Ko, S. H., Su, M., Leng, Y., Ribbe, A. E., Jiang, W., Mao, C. Symmetry Controls the Face Geometry of DNA Polyhedra. J. Am. Chem. Soc., 131: 1413–1315 (2009)

    Article  Google Scholar 

  35. Zhang, C., Su, M., He, Y., Zhao, X., Fang, P., Ribbe, A. E., Jiang, W., Mao, C. Conformational flexibility facilitates self-assembly of complex DNA nanostructures. Proc. Natl. Acad. Sci. U.S.A., 105: 10665–10669 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

We thank Professor Hongliang Lu and Dr. Weiling Yang for some helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Ge.

Additional information

This paper is supported by the National Natural Science Foundation of China (Nos 11271307, 11171279 and 11101174).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, Xa., Ge, J., Cheng, XS. et al. The Number of Circles of a Maximum State of a Plane Graph with Applications. Acta Math. Appl. Sin. Engl. Ser. 37, 409–420 (2021). https://doi.org/10.1007/s10255-021-1020-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10255-021-1020-1

Keywords

2000 MR Subject Classification

Navigation