Skip to main content
Log in

Evolutionary p(x)-Laplacian Equation with a Convection Term

  • Published:
Acta Mathematicae Applicatae Sinica, English Series Aims and scope Submit manuscript

Abstract

The paper studies an evolutionary p(x)-Laplacian equation with a convection term

$$u_{t}=\operatorname{div}\left(\rho^{\alpha}|\nabla u|^{p(x)-2} \nabla u\right)+\sum_{i=1}^{N} \frac{\partial b_{i}(u)}{\partial x_{i}},$$

where ρ(x)= dist(x, ∂Ω), essinf p(x) = p > 2. To assure the well-posedness of the solutions, the paper shows only a part of the boundary, ∑pΩ, on which we can impose the boundary value. ∑p is determined by the convection term, in particular, when \(1<\alpha<\frac{p^{-}-2}{2}\), ∑p = {xΩ: bi′(0)ni(x) < 0}. So, there is an essential difference between the equation and the usual evolutionary p-Laplacian equation. At last, the existence and the stability of weak solutions are proved under the additional conditions \(\alpha<\frac{p^{-}-2}{2}\) and ∑p = Ω.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antontsev, S., Shmarev, S. Anisotropic parabolic equations with variable nonlinearity. Publ. Mat., 53: 355–399 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Acerbi, E., Mingione, G. Regularity results for stationary electrorheological fluids. Arch. Ration. Mech. Anal., 164: 213–259 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. DiBenedetto, E. Degenerate Parabolic Equations. Springer-Verlag, New York, 1993

    Book  MATH  Google Scholar 

  4. Diening, L., Harjulehto, P. etc. Lebesgue and Sobolev spaces with variable exponents. Springer, Lecture Notes in Mathematics, ISSN electronic edition: 2011, 1617–9692

  5. Fan, X.L., Zhao, D. On the spaces L p (x)(Ω) and W m,p(x). J. Math. Anal. Appl., 263: 424–446 (2001)

    Article  MathSciNet  Google Scholar 

  6. Fichera, G. Sulle equazioni differenziali lineari ellittico-paraboliche delsecondo ordine. Atti Accad, Naz. Lincei.Mem.CL Sci Fis. Mat. Nat. Sez., 1(8): 1–30 (1956)

    MATH  Google Scholar 

  7. Kalashnikov, A.S. Some problems of the qualitative theory of nonlinear degenerate second order parabolic equations. Russian Math. Surveys, 42(2): 169–222 (1987)

    Article  MATH  Google Scholar 

  8. Kovácik, O., Rákosník, J. On spaces L p (x) and W k,p(x). Czechoslovak Math. J., 41: 592–618 (1991)

    MathSciNet  MATH  Google Scholar 

  9. Lian, S., Gao, W., Yuan, H., Cao, C. Existence of solutions to an initial Dirichlet problem of evolutional p(x)-Laplace equations. Ann. I. H. Poincare -AN., 29: 377–399 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Mashiyev, R.V., Buhrii, O.M. Existence of solutions of the parabolic variational inequality with variable exponent of nonlinearity. J. Math. Anal. Appl., 377: 450–463 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Oleinik, O.A. Linear equations of second order with nonnegative characteristic form. Math. sh., 609: 111–140 (1966); English transl.: Amer. Math. Soc. Tranl., 65: 167–199 (1967)

    MATH  Google Scholar 

  12. Oleinik, O.A, Radkevic, E.V. Second Order Differential Equations with Nonnegative Characteristic Form. Rhode Island: American Mathematical Society, and New York: Plenum Press, 1973

    Book  Google Scholar 

  13. Peng, L.Q. Non-uniqueness for the p-harmonic heat flow with potential into homogeneous spaces. Chinese Ann. Math. Ser. A, 27: 442–448 (2006) (in Chinese)

    MathSciNet  Google Scholar 

  14. Ruzicka, M. Electrorheological Fluids: Modeling and Mathematical Theory. Lecture Notes in Math., Vol.1748, Springer, Berlin, 2000

    Google Scholar 

  15. Taylor Michael, E. Partial differential equations III. Springer-Verlag, New York, Berlin, London, Hong Kong, 1999

    Google Scholar 

  16. Wang, J., Gao, W., Su, M. Periodic solutions of non-Newtonian polytropic filtration equations with non-linear sources. Applied Mathematics and Computation, 216: 1996–2009 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wu, Z., Zhao, J., Yin, J., Li, H.w Nonlinear diffusion equations. Word Scientific Publishing, Singapore, 2001

    Book  MATH  Google Scholar 

  18. Yao, F. Holder regularity for the general parabolic p(x, t)-Laplacian equations. Nonlinear Differential Equations and Applications, DOI https://doi.org/10.1007/s00030-014-0277-y, 2014

  19. Ye, H., Yin, J. Propagation profile for a non-Newtonian polytropic filtration equation with orientated convection. J. Math. Anal. Appl., 421: 1225–1237 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Yin, J., Wang, Ch. Properties of the boundary flux of a singular diffusion process. Chinese Annals of Mathematics, 25B(2): 175–182 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhan, H. Solutions to a convection diffusion equation. Chinese Journal of Contemporary Mathematics, 34(2): 179–200 (2013)

    MathSciNet  Google Scholar 

  22. Zhan, H. Solution to nonlinear parabolic equations related to the p-Laplacian. Chinese Annals of Mathematics, Series B, 33(4): 767–782 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhan, H. The asymptotic behavior of solutions for a class of doubly degenerate nonlinear parabolic equations. J. Math. Anal. Appl., 370: 1–10 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhan, H. Harnack estimates for weak solutions of a singular parabolic equation. Chinese Annals of Math., Ser. B, 32: 397–416 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhan, H. The boundary value condition of an evolutionary p(x)-Laplacian equation. Boundary Value Problems, 112: 2015 (2015)

    MathSciNet  Google Scholar 

  26. Zhan, H., Wen, J. Evolutionary p(x)-Laplacian equation free from the limitation of the boundary value. EJDE, 143: 1–13 (2016)

    MATH  Google Scholar 

  27. Zhan, H., Xu, B. The asymptotic behavior of the solution of a doubly degenerate parabolic equation with the convection term. Journal of Inequalities and Applications, 120(1): 1–16 (2014)

    MathSciNet  Google Scholar 

  28. Zhan, H., Yuan, H. Diffusion convection equation with boundary degeneracy. J. of Jilin Univ., 53(3): 353–358 (2015)(in Chinese)

    MathSciNet  Google Scholar 

  29. Zhang, C., Zhuo, S., Xue, X. Global gradient estimates for the parabolic p(x, t)-Laplacian equation. Non-linear Analysis, 105: 86–101 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhao, J.N. On the Cauchy problem and initial traces for the evolution p-Laplacian equations with strongly nonlinear sources. J. Diff Equ., 121: 329–383 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhikov, V.V. Passage to the limit in nonlinear variational problems. Mat. Sb., 183: 47–84 (1993), translation in Russian Acad. Sci. Sb. Math., 76(2): 427–359 (1993) (in Russian)

    MathSciNet  MATH  Google Scholar 

  32. Zhikov, V.V. On the density of smooth functions in Sobolev-Orlicz spaces. Otdel. Mat. Inst. Steklov. (POMI), 310: 67–81 (2004), translation in J. Math.Sci.(N.Y.), 132: 285–294 (2006)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua-shui Zhan.

Additional information

Supported by the National Natural Science Foundation of China (No. 2015J01592, No.2019J01858).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, Hs. Evolutionary p(x)-Laplacian Equation with a Convection Term. Acta Math. Appl. Sin. Engl. Ser. 35, 655–670 (2019). https://doi.org/10.1007/s10255-019-0842-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10255-019-0842-6

Keywords

2000 MR Subject Classification

Navigation