Skip to main content
Log in

Empirical likelihood based goodness-of-fit testing for generalized linear mixed models

  • Published:
Acta Mathematicae Applicatae Sinica, English Series Aims and scope Submit manuscript

Abstract

In this paper, we propose a bias-corrected empirical likelihood (BCEL) ratio to construct a goodness-of-fit test for generalized linear mixed models. BCEL test maintains the advantage of empirical likelihood that is self scale invariant and then does not involve estimating limiting variance of the test statistic to avoid deteriorating power of test. Furthermore, the bias correction makes the limit to be a process in which every variable is standard chi-squared. This simple structure of the process enables us to construct a Monte Carlo test procedure to approximate the null distribution. Thus, it overcomes a problem we encounter when classical empirical likelihood test is used, as it is asymptotically a functional of Gaussian process plus a normal shift function. The complicated covariance function makes it difficult to employ any approximation for the null distribution. The test is omnibus and power study shows that the test can detect local alternatives approaching the null at parametric rate. Simulations are carried out for illustration and for a comparison with existing method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Breslow, N.E., Clayton, D.G. Approximate inference in generalized linear mixed models. Journal of the American Statistical Association, 88: 9–25 (1993)

    MATH  Google Scholar 

  2. Cox, D.R., Hinkley, D.V. Theoretical Statistics. Chapman and Hall, London, 1973

    Google Scholar 

  3. He, X., Zhu, L.X. A lack-of-fit test for quantile regression. Journal of the American Statistical Association, 98: 1013–1022 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Kitamura, Y. Asymptotic optimality of empirical likelihood for testing moment restrictions. Econometrica, 69: 1661–1672 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Laird, N.M., Ware, J.H. Random-effects models for longitudinal data. Biometrics, 38: 963–974 (1982)

    Article  MATH  Google Scholar 

  6. Mcculloch, C.E. Maximum likelihood algorithms for generalized linear mixed models. Journal of the American Statistical Association, 92: 162–170 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. McCullagh, P., Nelder, J.A. Generalized Linear Models, 2nd edition. Chapman and Hall, London, 1989

    Book  MATH  Google Scholar 

  8. Molenberghs, G., Verbeke, G. Models for Discrete Longitudinal Data. Springer-Verlag, New York, 2005

    MATH  Google Scholar 

  9. Owen, A. Empirical Likelihood. Chapman and Hall, London, 2001

    Book  MATH  Google Scholar 

  10. Pan, Z.Y., Lin, D.Y. Goodness-of-fit methods for generalized linear mixed models. Biometrics, 61: 1000–1009 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Pollard, D. Convegence of Stochastic Processes. Springer-Verlag, New York, 1984

    Book  Google Scholar 

  12. Stute, W. Nonparameter model checks for regression. Ann of Statistics, 25: 613–641 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  13. Stute, W., Gonzalez Manteiga, W., Presedo Quindimil, M. Bootstrap approximations in model checks for regression. Journal of the American Statistical Association, 93: 141–149 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  14. Stute, W., Thies, S., Zhu, L.X. Model checks for regression: an innovation process approach. Annals of Statistics, 26: 1916–1934 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  15. Stute, W., Zhu, L.X. Nonparametric checks for single-index models. Annals of Statistics, 33: 1048–1083 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Tanizaki, H. Power comparison of empirical likelihood ratio tests: small sample properties through Monte Carlo studies. Kobe University Economic Review, 50: 13–25 (2004)

    Google Scholar 

  17. White, H.L. Maximum likelihood estimation of misspecified models. Econometrica, 50: 1–25 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  18. Wolfinger, R., O’Connell, M. Generalized linear mixed models: a pseudo-likelihood approach. Journal of statistical computation and simulation, 48: 233–243 (1993)

    Article  MATH  Google Scholar 

  19. Zeger, S.L., Karim, M.R. Generalized linear models with random effects: a Gibbs sapmpling approach. Journal of the American Statistical Association, 86: 79–102 (1991)

    Article  MathSciNet  Google Scholar 

  20. Zhu, L.X. Model checking of dimensional-reduction type for regression. Statistica Sinica, 13: 283–296 (2003)

    MATH  MathSciNet  Google Scholar 

  21. Zhu, L.X. Nonparametric Monte carlo Tests and Their Appications. Springer-Verlag, New York, 2005

    Google Scholar 

  22. Zhu, L.X., Ng, K.W. Checking the adequacy of a partial linear model. Statistica Sinica, 13: 763–781 (2003)

    MATH  MathSciNet  Google Scholar 

  23. Zhu, L.X., Qin, Y.S., Xu, W.L. The empirical likelihood goodness-of-fit test for regression model. Science in China (A), 50: 829–840 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-xing Zhu.

Additional information

Supported by the National Natural Science Foundation of China (No. 10901109) and a grant (HKBU2030/07P) from the Research Grants Council of Hong Kong, Hong Kong, China.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, Sq., Zhu, Lx. Empirical likelihood based goodness-of-fit testing for generalized linear mixed models. Acta Math. Appl. Sin. Engl. Ser. 30, 37–48 (2014). https://doi.org/10.1007/s10255-014-0270-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10255-014-0270-6

Keywords

2000 MR Subject Classification

Navigation