Skip to main content

Role of the Mediator complex in nuclear hormone receptor signaling

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 156))

Abstract

Mediator is an evolutionarily conserved multisubunit protein complex that plays a key role in regulating transcription by RNA polymerase II. The complex functions by serving as a molecular bridge between DNA-bound transcriptional activators and the basal transcription apparatus. In humans, Mediator was first characterized as a thyroid hormone receptor (TR)-associated protein (TRAP) complex that facilitates ligand-dependent transcriptional activation by TR. More recently, Mediator has been established as an essential coactivator for a broad range of nuclear hormone receptors (NRs) as well as several other types of gene-specific transcriptional activators. A single subunit of the complex, MED1/TRAP220, is required for direct ligand-dependent interactions with NRs. Mediator coactivates NR-regulated gene expression by facilitating the recruitment and activation of the RNA polymerase II-associated basal transcription apparatus. Importantly, Mediator acts in concert with other NR coactivators involved in chromatin remodeling to initiate transcription of NR target genes in a multistep manner. In this review, we summarize the functional role of Mediator in NR signaling pathways with an emphasis on the underlying molecular mechanisms by which the complex interacts with NRs and subsequently facilitates their action. We also focus on recent advances in our understanding of TRAP/Mediator's pathophysiological role in mammalian disease and development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acevedo ML, Kraus WL (2003) Mediator and p300/CBP-steroid receptor coactivator complexes have distinct roles, but function synergistically, during estrogen receptor alpha-dependent transcription with chromatin templates. Mol Cell Biol 23:335–348

    PubMed  CAS  Google Scholar 

  • Acevedo ML, Lee KC, Stender JD, Katzenellenbogen BS, Kraus WL (2004) Selective recognition of distinct classes of coactivators by a ligand-inducible activation domain. Mol Cell 13:725–738

    PubMed  CAS  Google Scholar 

  • Akoulitchev S, Chuikov S, Reinberg D (2000) TFIIH is negatively regulated by cdk8-containing mediator complexes. Nature 407:102–106

    PubMed  CAS  Google Scholar 

  • Aranda A, Pascual A (2001) Nuclear hormone receptors and gene expression. Physiol Rev 81:1269–1304

    PubMed  CAS  Google Scholar 

  • Asturias FJ, Jiang YW, Myers LC, Gustafsson CM, Kornberg RD (1999) Conserved structures of mediator and RNA polymerase II holoenzyme. Science 283:985–987

    PubMed  CAS  Google Scholar 

  • Atkins GB, Hu X, Guenther MG, Rachez C, Freedman LP, Lazar MA (1999) Coactivators for the orphan nuclear receptor RORalpha. Mol Endocrinol 13:1550–1557

    PubMed  CAS  Google Scholar 

  • Barettino D, Vivanco Ruiz MM, Stunnenberg HG (1994) Characterization of the ligand-dependent transactivation domain of thyroid hormone receptor. EMBO J 13:3039–3049

    PubMed  CAS  Google Scholar 

  • Belandia B, Parker MG (2003) Nuclear receptors: a rendezvous for chromatin remodeling factors. Cell 114:277–280

    PubMed  CAS  Google Scholar 

  • Belandia B, Orford RL, Hurst HC, Parker MG (2002) Targeting of SWI/SNF chromatin remodelling complexes to estrogen-responsive genes. EMBO J 21:4094–4103

    PubMed  CAS  Google Scholar 

  • Borggrefe T, Davis R, Erdjument-Bromage H, Tempst P, Kornberg RD (2002) A complex of the Srb8, -9, -10, and -11 transcriptional regulatory proteins from yeast. J Biol Chem 277:44202–44207

    PubMed  CAS  Google Scholar 

  • Boube M, Joulia L, Cribbs DL, Bourbon HM (2002) Evidence for a mediator of RNA polymerase II transcriptional regulation conserved from yeast to man. Cell 110:143–151

    PubMed  CAS  Google Scholar 

  • Bourbon HM, Aguilera A, Ansari AZ, Asturias FJ, Berk AJ, Bjorklund S, Blackwell TK, Borggrefe T, Carey M, Carlson M, Conaway JW, Conaway RC, Emmons SW, Fondell JD, Freedman LP, Fukasawa T, Gustafsson CM, Han M, He X, Herman PK, Hinnebusch AG, Holmberg S, Holstege FC, Jaehning JA, Kim YJ, Kuras L, Leutz A, Lis JT, Meisterernest M, Naar AM, Nasmyth K, Parvin JD, Ptashne M, Reinberg D, Ronne H, Sadowski I, Sakurai H, Sipiczki M, Sternberg PW, Stillman DJ, Strich R, Struhl K, Svejstrup JQ, Tuck S, Winston F, Roeder RG, Kornberg RD (2004) A unified nomenclature for protein subunits of mediator complexes linking transcriptional regulators to RNA polymerase II. Mol Cell 14:553–557

    PubMed  CAS  Google Scholar 

  • Boyer TG, Martin ME, Lees E, Ricciardi RP, Berk AJ (1999) Mammalian Srb/Mediator complex is targeted by adenovirus E1A protein. Nature 399:276–279

    PubMed  CAS  Google Scholar 

  • Burakov D, Wong CW, Rachez C, Cheskis BJ, Freedman LP (2000) Functional interactions between the estrogen receptor and DRIP205, a subunit of the heteromeric DRIP coactivator complex. J Biol Chem 275:20928–20934

    PubMed  CAS  Google Scholar 

  • Burakov D, Crofts LA, Chang CP, Freedman LP (2002) Reciprocal recruitment of DRIP/mediator and p160 coactivator complexes in vivo by estrogen receptor. J Biol Chem 277:14359–14362

    PubMed  CAS  Google Scholar 

  • Cantin GT, Stevens JL, Berk AJ (2003) Activation domain-mediator interactions promote transcription preinitiation complex assembly on promoter DNA. Proc Natl Acad Sci U S A 100:12003–12008

    PubMed  CAS  Google Scholar 

  • Carlson M (1997) Genetics of transcriptional regulation in yeast: connections to the RNA polymerase II CTD. Annu Rev Cell Dev Biol 13:1–23

    PubMed  CAS  Google Scholar 

  • Chadick JZ, Asturias FJ (2005) Structure of eukaryotic Mediator complexes. Trends Biochem Sci 30:264–271

    PubMed  CAS  Google Scholar 

  • Chen D, Ma H, Hong H, Koh SS, Huang SM, Schurter BT, Aswad DW, Stallcup MR (1999) Regulation of transcription by a protein methyltransferase. Science 284:2174–2177

    PubMed  CAS  Google Scholar 

  • Chen JD, Evans RM (1995) A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 377:454–457

    PubMed  CAS  Google Scholar 

  • Chi Y, Huddleston MJ, Zhang X, Young RA, Annan RS, Carr SA, Deshaies RJ (2001) Negative regulation of Gcn4 and Msn2 transcription factors by Srb10 cyclin-dependent kinase. Genes Dev 15:1078–1092

    PubMed  CAS  Google Scholar 

  • Coulthard VH, Matsuda S, Heery DM (2003) An extended LXXLL motif sequence determines the nuclear receptor binding specificity of TRAP220. J Biol Chem 278:10942–10951

    PubMed  CAS  Google Scholar 

  • Crawford SE, Qi C, Misra P, Stellmach V, Rao MS, Engel JD, Zhu Y, Reddy JK (2002) Defects of the heart, eye, and megakaryocytes in peroxisome proliferator activator receptor-binding protein (PBP) null embryos implicate GATA family of transcription factors. J Biol Chem 277:3585–3592

    PubMed  CAS  Google Scholar 

  • Danielian PS, White R, Lees JA, Parker MG (1992) Identification of a conserved region required for hormone dependent transcriptional activation by steroid hormone receptors [published erratum appears in EMBO J 1992 Jun;11(6):2366]. EMBO J 11:1025–1033

    PubMed  CAS  Google Scholar 

  • Darimont BD, Wagner RL, Apriletti JW, Stallcup MR, Kushner PJ, Baxter JD, Fletterick RJ, Yamamoto KR (1998) Structure and specificity of nuclear receptor-coactivator interactions. Genes Dev 12:3343–3356

    PubMed  CAS  Google Scholar 

  • Davis JA, Takagi Y, Kornberg RD, Asturias FA (2002) Structure of the yeast RNA polymerase II holoenzyme: Mediator conformation and polymerase interaction. Mol Cell 10:409–415

    PubMed  CAS  Google Scholar 

  • Ding XF, Anderson CM, Ma H, Hong H, Uht RM, Kushner PJ, Stallcup MR (1998) Nuclear receptor-binding sites of coactivators glucocorticoid receptor interacting protein 1 (GRIP1) and steroid receptor coactivator 1 (SRC-1): multiple motifs with different binding specificities. Mol Endocrinol 12:302–313

    PubMed  CAS  Google Scholar 

  • Dotson MR, Yuan CX, Roeder RG, Myers LC, Gustafsson CM, Jiang YW, Li Y, Kornberg RD, Asturias FJ (2000) Structural organization of yeast and mammalian mediator complexes. Proc Natl Acad Sci U S A 97:14307–14310

    PubMed  CAS  Google Scholar 

  • Durand B, Saunders M, Gaudon C, Roy B, Losson R, Chambon P (1994) Activation function 2 (AF-2) of retinoic acid receptor and 9-cis retinoic acid receptor: presence of a conserved autonomous constitutive activating domain and influence of the nature of the response element on AF-2 activity. EMBO J 13:5370–5382

    PubMed  CAS  Google Scholar 

  • Fondell JD, Ge H, Roeder RG (1996) Ligand induction of a transcriptionally active thyroid hormone receptor coactivator complex. Proc Natl Acad Sci U S A 93:8329–8333

    PubMed  CAS  Google Scholar 

  • Fondell JD, Guermah M, Malik S, Roeder RG (1999) Thyroid hormone receptor-associated proteins and general positive cofactors mediate thyroid hormone receptor function in the absence of the TATA box-binding protein-associated factors of TFIID. Proc Natl Acad Sci U S A 96:1959–1964

    PubMed  CAS  Google Scholar 

  • Fryer CJ, White JB, Jones KA (2004) Mastermind recruits CycC:CDK8 to phosphorylate the Notch ICD and coordinate activation with turnover. Mol Cell 16:509–520

    PubMed  CAS  Google Scholar 

  • Galeeva A, Treuter E, Tuohimaa P, Pelto-Huikko M (2002) Comparative distribution of the mammalian mediator subunit thyroid hormone receptor-associated protein (TRAP220) mRNA in developing and adult rodent brain. Eur J Neurosci 16:671–683

    PubMed  Google Scholar 

  • Ge K, Guermah M, Yuan CX, Ito M, Wallberg AE, Spiegelman BM, Roeder RG (2002) Transcription coactivator TRAP220 is required for PPAR gamma 2-stimulated adipogenesis. Nature 417:563–567

    PubMed  CAS  Google Scholar 

  • Gim BS, Park JM, Yoon JH, Kang C, Kim YJ (2001) Drosophila Med6 is required for elevated expression of a large but distinct set of developmentally regulated genes. Mol Cell Biol 21:5242–5255

    PubMed  CAS  Google Scholar 

  • Glass CK, Rosenfeld MG (2000) The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev 14:121–141

    PubMed  CAS  Google Scholar 

  • Guglielmi B, van Berkum NL, Klapholz B, Bijma T, Boube M, Boschiero C, Bourbon HM, Holstege FC, Werner M (2004) A high resolution protein interaction map of the yeast Mediator complex. Nucleic Acids Res 32:5379–5391

    PubMed  CAS  Google Scholar 

  • Gustafsson CM, Myers LC, Li Y, Redd MJ, Lui M, Erdjument-Bromage H, Tempst P, Kornberg RD (1997) Identification of Rox3 as a component of mediator and RNA polymerase II holoenzyme. J Biol Chem 272:48–50

    PubMed  CAS  Google Scholar 

  • Heery DM, Kalkhoven E, Hoare S, Parker MG (1997) A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 387:733–736

    PubMed  CAS  Google Scholar 

  • Hengartner CJ, Thompson CM, Zhang J, Chao DM, Liao SM, Koleske AJ, Okamura S, Young RA (1995) Association of an activator with an RNA polymerase II holoenzyme. Genes Dev 9:897–910

    PubMed  CAS  Google Scholar 

  • Hengartner CJ, Myer VE, Liao SM, Wilson CJ, Koh SS, Young RA (1998) Temporal regulation of RNA polymerase II by Srb10 and Kin28 cyclin-dependent kinases. Mol Cell 2:43–53

    PubMed  CAS  Google Scholar 

  • Hittelman AB, Burakov D, Iniguez-Lluhi JA, Freedman LP, Garabedian MJ (1999) Differential regulation of glucocorticoid receptor transcriptional activation via AF-1-associated proteins. EMBO J 18:5380–5388

    PubMed  CAS  Google Scholar 

  • Holstege FC, Jennings EG, Wyrick JJ, Lee TI, Hengartner CJ, Green MR, Golub TR, Lander ES, Young RA (1998) Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95:717–728

    PubMed  CAS  Google Scholar 

  • Horlein AJ, Naar AM, Heinzel T, Torchia J, Gloss B, Kurokawa R, Ryan A, Kamei Y, Soderstrom M, Glass CK, et al (1995) Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 377:397–404

    PubMed  CAS  Google Scholar 

  • Hosking DJ (1981) Paget's disease of bone. Br Med J (Clin Res Ed) 283:686–688

    CAS  Google Scholar 

  • Hu X, Lazar MA (2000) Transcriptional repression by nuclear hormone receptors. Trends Endocrinol Metab 11:6–10

    PubMed  CAS  Google Scholar 

  • Ito M, Roeder RG (2001) The TRAP/SMCC/Mediator complex and thyroid hormone receptor function. Trends Endocrinol Metab 12:127–134

    PubMed  CAS  Google Scholar 

  • Ito M, Yuan CX, Malik S, Gu W, Fondell JD, Yamamura S, Fu ZY, Zhang X, Qin J, Roeder RG (1999) Identity between TRAP and SMCC complexes indicates novel pathways for the function of nuclear receptors and diverse mammalian activators. Mol Cell 3:361–370

    PubMed  CAS  Google Scholar 

  • Ito M, Yuan CX, Okano HJ, Darnell RB, Roeder RG (2000) Involvement of the TRAP220 component of the TRAP/SMCC coactivator complex in embryonic development and thyroid hormone action. Mol Cell 5:683–693

    PubMed  CAS  Google Scholar 

  • Jia Y, Qi C, Kashireddi P, Surapureddi S, Zhu YJ, Rao MS, Le Roith D, Chambon P, Gonzalez FJ, Reddy JK (2004) Transcription coactivator PBP, the peroxisome proliferator-activated receptor (PPAR)-binding protein, is required for PPARalpha-regulated gene expression in liver. J Biol Chem 279:24427–24434

    PubMed  CAS  Google Scholar 

  • Jia Y, Qi C, Zhang Z, Zhu YT, Rao SM, Zhu YJ (2005) Peroxisome proliferator-activated receptor-binding protein null mutation results in defective mammary gland development. J Biol Chem 280:10766–10773

    PubMed  CAS  Google Scholar 

  • Johnson KM, Wang J, Smallwood A, Arayata C, Carey M (2002) TFIID and human mediator coactivator complexes assemble cooperatively on promoter DNA. Genes Dev 16:1852–1863

    PubMed  CAS  Google Scholar 

  • Kamei Y, Xu L, Heinzel T, Torchia J, Kurokawa R, Gloss B, Lin SC, Heyman RA, Rose DW, Glass CK, Rosenfeld MG (1996) A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell 85:403–414

    PubMed  CAS  Google Scholar 

  • Kang YK, Guermah M, Yuan CX, Roeder RG (2002) The TRAP/Mediator coactivator complex interacts directly with estrogen receptors alpha and beta through the TRAP220 subunit and directly enhances estrogen receptor function in vitro. Proc Natl Acad Sci U S A 99:2642–2647

    PubMed  CAS  Google Scholar 

  • Kim YJ, Bjorklund S, Li Y, Sayre MH, Kornberg RD (1994) A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell 77:599–608

    PubMed  CAS  Google Scholar 

  • Kornberg RD (2005) Mediator and the mechanism of transcriptional activation. Trends Biochem Sci 30:235–239

    PubMed  CAS  Google Scholar 

  • Kurihara N, Ishizuka S, Demulder A, Menaa C, Roodman GD (2004) Paget's disease—a VDR coactivator disease? J Steroid Biochem Mol Biol 89–90:321–325

    Google Scholar 

  • Kwon JY, Park JM, Gim BS, Han SJ, Lee J, Kim YJ (1999) Caenorhabditis elegans mediator complexes are required for developmental-specific transcriptional activation. Proc Natl Acad Sci U S A 96:14990–14995

    PubMed  CAS  Google Scholar 

  • Landles C, Chalk S, Steel JH, Rosewell I, Spencer-Dene B, Lalani el N, Parker MG (2003) The thyroid hormone receptor-associated protein TRAP220 is required at distinct embryonic stages in placental, cardiac, and hepatic development. Mol Endocrinol 17:2418–2435

    PubMed  CAS  Google Scholar 

  • Larschan E, Winston F (2005) The Saccharomyces cerevisiae Srb8-Srb11 complex functions with the SAGA complex during Gal4-activated transcription. Mol Cell Biol 25:114–123

    PubMed  CAS  Google Scholar 

  • Lee JE, Kim K, Sacchettini JC, Smith CV, Safe S (2005) DRIP150 coactivation of estrogen receptor alpha in ZR-75 breast cancer cells is independent of LXXLL motifs. J Biol Chem 280:8819–8830

    PubMed  CAS  Google Scholar 

  • Liao SM, Zhang J, Jeffery DA, Koleske AJ, Thompson CM, Chao DM, Viljoen M, van Vuuren HJ, Young RA (1995) A kinase-cyclin pair in the RNA polymerase II holoenzyme. Nature 374:193–196

    PubMed  CAS  Google Scholar 

  • Lowell BB (1999) PPARgamma: an essential regulator of adipogenesis and modulator of fat cell function. Cell 99:239–242

    PubMed  CAS  Google Scholar 

  • Malik S, Gu W, Wu W, Qin J, Roeder RG (2000) The USA-derived transcriptional coactivator PC2 is a submodule of TRAP/SMCC and acts synergistically with other PCs. Mol Cell 5:753–760

    PubMed  CAS  Google Scholar 

  • Malik S, Wallberg AE, Kang YK, Roeder RG (2002) TRAP/SMCC/mediator-dependent transcriptional activation from DNA and chromatin templates by orphan nuclear receptor hepatocyte nuclear factor 4. Mol Cell Biol 22:5626–5637

    PubMed  CAS  Google Scholar 

  • Malik S, Guermah M, Yuan CX, Wu W, Yamamura S, Roeder RG (2004) Structural and functional organization of TRAP220, the TRAP/mediator subunit that is targeted by nuclear receptors. Mol Cell Biol 24:8244–8254

    PubMed  CAS  Google Scholar 

  • Malik S, Baek HJ, Wu W, Roeder RG (2005) Structural and functional characterization of PC2 and RNA polymerase II-associated subpopulations of metazoan Mediator. Mol Cell Biol 25:2117–2129

    PubMed  CAS  Google Scholar 

  • Mangelsdorf DJ, Evans RM (1995) The RXR heterodimers and orphan receptors [review; 80 refs]. Cell 83:841–850

    PubMed  CAS  Google Scholar 

  • Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K, Blumberg B, Kastner P, Mark M, Chambon P, et al (1995) The nuclear receptor superfamily: the second decade. [Review] [21 refs]. Cell 83:835–839

    PubMed  CAS  Google Scholar 

  • McKenna NJ, O'Malley BW (2002) Combinatorial control of gene expression by nuclear receptors and coregulators. Cell 108:465–474

    PubMed  CAS  Google Scholar 

  • Metivier R, Penot G, Hubner MR, Reid G, Brand H, Kos M, Gannon F (2003) Estrogen receptor-alpha directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter. Cell 115:751–763

    PubMed  CAS  Google Scholar 

  • Mo X, Kowenz-Leutz E, Xu H, Leutz A (2004) Ras induces mediator complex exchange on C/EBP beta. Mol Cell 13:241–250

    PubMed  CAS  Google Scholar 

  • Moghal N, Sternberg PW (2003) A component of the transcriptional mediator complex inhibits RAS-dependent vulval fate specification in C. elegans. Development 130:57–69

    PubMed  CAS  Google Scholar 

  • Moore JM, Guy RK (2005) Coregulator interactions with the thyroid hormone receptor. Mol Cell Proteomics 4:475–482

    PubMed  CAS  Google Scholar 

  • Moras D, Gronemeyer H (1998) The nuclear receptor ligand-binding domain: structure and function. Curr Opin Cell Biol 10:384–391

    PubMed  CAS  Google Scholar 

  • Muncke N, Jung C, Rudiger H, Ulmer H, Roeth R, Hubert A, Goldmuntz E, Driscoll D, Goodship J, Schon K, Rappold G (2003) Missense mutations and gene interruption in PROSIT240, a novel TRAP240-like gene, in patients with congenital heart defect (transposition of the great arteries). Circulation 108:2843–2850

    PubMed  CAS  Google Scholar 

  • Myer VE, Young RA (1998) RNA polymerase II holoenzymes and subcomplexes. J Biol Chem 273:27757–27760

    PubMed  CAS  Google Scholar 

  • Myers LC, Kornberg RD (2000) Mediator of transcriptional regulation. Annu Rev Biochem 69:729–749

    PubMed  CAS  Google Scholar 

  • Myers LC, Gustafsson CM, Bushnell DA, Lui M, Erdjument-Bromage H, Tempst P, Kornberg RD (1998) The Med proteins of yeast and their function through the RNA polymerase II carboxy-terminal domain. Genes Dev 12:45–54

    PubMed  CAS  Google Scholar 

  • Naar AM, Boutin JM, Lipkin SM, Yu VC, Holloway JM, Glass CK, Rosenfeld MG (1991) The orientation and spacing of core DNA-binding motifs dictate selective transcriptional responses to three nuclear receptors. Cell 65:1267–1279

    PubMed  CAS  Google Scholar 

  • Naar AM, Beaurang PA, Zhou S, Abraham S, Solomon W, Tjian R (1999) Composite co-activator ARC mediates chromatin-directed transcriptional activation. Nature 398:828–832

    PubMed  CAS  Google Scholar 

  • Naar AM, Taatjes DJ, Zhai W, Nogales E, Tjian R (2002) Human CRSP interacts with RNA polymerase II CTD and adopts a specific CTD-bound conformation. Genes Dev 16:1339–1344

    PubMed  CAS  Google Scholar 

  • Nolte RT, Wisely GB, Westin S, Cobb JE, Lambert MH, Kurokawa R, Rosenfeld MG, Willson TM, Glass CK, Milburn MV (1998) Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-gamma. Nature 395:137–143

    PubMed  CAS  Google Scholar 

  • Park JM, Werner J, Kim JM, Lis JT, Kim YJ (2001) Mediator, not holoenzyme, is directly recruited to the heat shock promoter by HSF upon heat shock. Mol Cell 8:9–19

    PubMed  CAS  Google Scholar 

  • Pavri R, Lewis B, Kim TK, Dilworth FJ, Erdjument-Bromage H, Tempst P, de Murcia G, Evans R, Chambon P, Reinberg D (2005) PARP-1 determines specificity in a retinoid signaling pathway via direct modulation of mediator. Mol Cell 18:83–96

    PubMed  CAS  Google Scholar 

  • Philibert RA, Sandhu HK, Hutton AM, Wang Z, Arndt S, Andreasen NC, Crowe R, Wassink TH (2001) Population-based association analyses of the HOPA12 bp polymorphism for schizophrenia and hypothyroidism. Am J Med Genet 105:130–134

    PubMed  CAS  Google Scholar 

  • Pineda Torra I, Freedman LP, Garabedian MJ (2004) Identification of DRIP205 as a coactivator for the farnesoid X receptor. J Biol Chem 279:36184–36191

    PubMed  CAS  Google Scholar 

  • Rachez C, Suldan Z, Ward J, Chang CP, Burakov D, Erdjument-Bromage H, Tempst P, Freedman LP (1998) A novel protein complex that interacts with the vitamin D3 receptor in a ligand-dependent manner and enhances VDR transactivation in a cell-free system. Genes Dev 12:1787–1800

    PubMed  CAS  Google Scholar 

  • Rachez C, Lemon BD, Suldan Z, Bromleigh V, Gamble M, Naar AM, Erdjument-Bromage H, Tempst P, Freedman LP (1999) Ligand-dependent transcription activation by nuclear receptors requires the DRIP complex. Nature 398:824–828

    PubMed  CAS  Google Scholar 

  • Rachez C, Gamble M, Chang CP, Atkins GB, Lazar MA, Freedman LP (2000) The DRIP complex and SRC-1/p160 coactivators share similar nuclear receptor binding determinants but constitute functionally distinct complexes. Mol Cell Biol 20:2718–2726

    PubMed  CAS  Google Scholar 

  • Ranish JA, Yudkovsky N, Hahn S (1999) Intermediates in formation and activity of the RNA polymerase II preinitiation complex: holoenzyme recruitment and a postrecruitment role for the TATA box and TFIIB. Genes Dev 13:49–63

    PubMed  CAS  Google Scholar 

  • Reeves WM, Hahn S (2003) Activator-independent functions of the yeast mediator sin4 complex in preinitiation complex formation and transcription reinitiation. Mol Cell Biol 23:349–358

    PubMed  CAS  Google Scholar 

  • Ren Y, Behre E, Ren Z, Zhang J, Wang Q, Fondell JD (2000) Specific structural motifs determine TRAP220 interactions with nuclear hormone receptors. Mol Cell Biol 20:5433–5446

    PubMed  CAS  Google Scholar 

  • Roeder RG (2005) Transcriptional regulation and the role of diverse coactivators in animal cells. FEBS Lett 579:909–915

    PubMed  CAS  Google Scholar 

  • Ryu S, Zhou S, Ladurner AG, Tjian R (1999) The transcriptional cofactor complex CRSP is required for activity of the enhancer-binding protein Sp1. Nature 397:446–450

    PubMed  CAS  Google Scholar 

  • Saatcioglu F, Bartunek P, Deng T, Zenke M, Karin M (1993) A conserved C-terminal sequence that is deleted in v-ErbA is essential for the biological activities of c-ErbA (the thyroid hormone receptor). Mol Cell Biol 13:3675–3685

    PubMed  CAS  Google Scholar 

  • Samuelsen CO, Baraznenok V, Khorosjutina O, Spahr H, Kieselbach T, Holmberg S, Gustafsson CM (2003) TRAP230/ARC240 and TRAP240/ARC250 Mediator subunits are functionally conserved through evolution. Proc Natl Acad Sci U S A 100:6422–6427

    PubMed  CAS  Google Scholar 

  • Sato S, Tomomori-Sato C, Parmely TJ, Florens L, Zybailov B, Swanson SK, Banks CA, Jin J, Cai Y, Washburn MP, Conaway JW, Conaway RC (2004) A set of consensus mammalian mediator subunits identified by multidimensional protein identification technology. Mol Cell 14:685–691

    PubMed  CAS  Google Scholar 

  • Shang Y, Hu X, DiRenzo J, Lazar MA, Brown M (2000) Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription. Cell 103:843–852

    PubMed  CAS  Google Scholar 

  • Sharma D, Fondell JD (2000) Temporal formation of distinct thyroid hormone receptor coactivator complexes in HeLa cells. Mol Endocrinol 14:2001–2009

    PubMed  CAS  Google Scholar 

  • Sharma D, Fondell JD (2002) Ordered recruitment of histone acetyltransferases and the TRAP/Mediator complex to thyroid hormone-responsive promoters in vivo. Proc Natl Acad Sci U S A 99:7934–7939

    PubMed  CAS  Google Scholar 

  • Shiau AK, Barstad D, Loria PM, Cheng L, Kushner PJ, Agard DA, Greene GL (1998) The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell 95:927–937

    PubMed  CAS  Google Scholar 

  • Singh N, Han M (1995) sur-2, a novel gene, functions late in the let-60 ras-mediated signaling pathway during Caenorhabditis elegans vulval induction. Genes Dev 9:2251–2265

    PubMed  CAS  Google Scholar 

  • Stevens JL, Cantin GT, Wang G, Shevchenko A, Berk AJ (2002) Transcription control by E1A and MAP kinase pathway via Sur2 mediator subunit. Science 296:755–758

    PubMed  CAS  Google Scholar 

  • Sun X, Zhang Y, Cho H, Rickert P, Lees E, Lane W, Reinberg D (1998) NAT, a human complex containing Srb polypeptides that functions as a negative regulator of activated transcription. Mol Cell 2:213–222

    PubMed  CAS  Google Scholar 

  • Taatjes DJ, Tjian R (2004) Structure and function of CRSP/Med2; a promoter-selective transcriptional coactivator complex. Mol Cell 14:675–683

    PubMed  CAS  Google Scholar 

  • Taatjes DJ, Naar AM, Andel F 3rd, Nogales E, Tjian R (2002) Structure, function, and activator-induced conformations of the CRSP coactivator. Science 295:1058–1062

    PubMed  CAS  Google Scholar 

  • Taatjes DJ, Schneider-Poetsch T, Tjian R (2004) Distinct conformational states of nuclear receptor-bound CRSP-Med complexes. Nat Struct Mol Biol 11:664–671

    PubMed  CAS  Google Scholar 

  • Thompson CM, Koleske AJ, Chao DM, Young RA (1993) A multisubunit complex associated with the RNA polymerase II CTD and TATA-binding protein in yeast. Cell 73:1361–1375

    PubMed  CAS  Google Scholar 

  • Treisman J (2001) Drosophila homologues of the transcriptional coactivation complex subunits TRAP240 and TRAP230 are required for identical processes in eye-antennal disc development. Development 128:603–615

    PubMed  CAS  Google Scholar 

  • Treuter E, Johansson L, Thomsen JS, Warnmark A, Leers J, Pelto-Huikko M, Sjoberg M, Wright AP, Spyrou G, Gustafsson JA (1999) Competition between thyroid hormone receptor-associated protein (TRAP) 220 and transcriptional intermediary factor (TIF) 2 for binding to nuclear receptors. Implications for the recruitment of TRAP and p160 coactivator complexes. J Biol Chem 274:6667–6677

    PubMed  CAS  Google Scholar 

  • Tsai CC, Fondell JD (2004) Nuclear receptor recruitment of histone-modifying enzymes to target gene promoters. Vitam Horm 68:93–122

    PubMed  CAS  Google Scholar 

  • Tsai MJ, O'Malley BW (1994) Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Annu Rev Biochem 63:451–486

    PubMed  CAS  Google Scholar 

  • Umesono K, Murakami KK, Thompson CC, Evans RM (1991) Direct repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D3 receptors. Cell 65:1255–1266

    PubMed  CAS  Google Scholar 

  • Wang G, Balamotis MA, Stevens JL, Yamaguchi Y, Handa H, Berk AJ (2005) Mediator requirement for both recruitment and postrecruitment steps in transcription initiation. Mol Cell 17:683–694

    PubMed  CAS  Google Scholar 

  • Wang JC, Walker A, Blackwell TK, Yamamoto KR (2004a) The Caenorhabditis elegans ortholog of TRAP240, CeTRAP240/let-19, selectively modulates gene expression and is essential for embryogenesis. J Biol Chem 279:29270–29277

    PubMed  CAS  Google Scholar 

  • Wang Q, Sharma D, Ren Y, Fondell JD (2002) A coregulatory role for the TRAP-mediator complex in androgen receptor-mediated gene expression. J Biol Chem 277:42852–42858

    PubMed  CAS  Google Scholar 

  • Wang S, Ge K, Roeder RG, Hankinson O (2004b) Role of mediator in transcriptional activation by the aryl hydrocarbon receptor. J Biol Chem 279:13593–13600

    PubMed  CAS  Google Scholar 

  • Warnmark A, Almlof T, Leers J, Gustafsson JA, Treuter E (2001) Differential recruitment of the mammalian mediator subunit TRAP220 by estrogen receptors ERalpha and ERbeta. J Biol Chem 276:23397–23404

    PubMed  CAS  Google Scholar 

  • Wu SY, Zhou T, Chiang CM (2003) Human mediator enhances activator-facilitated recruitment of RNA polymerase II and promoter recognition by TATA-binding protein (TBP) independently of TBP-associated factors. Mol Cell Biol 23:6229–6242

    PubMed  CAS  Google Scholar 

  • Yang W, Rachez C, Freedman LP (2000) Discrete roles for peroxisome proliferator-activated receptor gamma and retinoid X receptor in recruiting nuclear receptor coactivators. Mol Cell Biol 20:8008–8017

    PubMed  CAS  Google Scholar 

  • Yuan CX, Ito M, Fondell JD, Fu ZY, Roeder RG (1998) The TRAP220 component of a thyroid hormone receptor-associated protein (TRAP) coactivator complex interacts directly with nuclear receptors in a ligand-dependent fashion. Proc Natl Acad Sci U S A 95:7939–7944

    PubMed  CAS  Google Scholar 

  • Yudkovsky N, Ranish JA, Hahn S (2000) A transcription reinitiation intermediate that is stabilized by activator. Nature 408:225–229

    PubMed  CAS  Google Scholar 

  • Zhu Y, Qi C, Jain S, Rao MS, Reddy JK (1997) Isolation and characterization of PBP, a protein that interacts with peroxisome proliferator-activated receptor. J Biol Chem 272:25500–25506

    PubMed  CAS  Google Scholar 

  • Zhu Y, Qi C, Jain S, Le Beau MM, Espinosa R 3rd, Atkins GB, Lazar MA, Yeldandi AV, Rao MS, Reddy JK (1999) Amplification and overexpression of peroxisome proliferator-activated receptor binding protein (PBP/PPARBP) gene in breast cancer. Proc Natl Acad Sci U S A 96:10848–10853

    PubMed  CAS  Google Scholar 

  • Zhu Y, Qi C, Jia Y, Nye JS, Rao MS, Reddy JK (2000) Deletion of PBP/PPARBP, the gene for nuclear receptor coactivator peroxisome proliferator-activated receptor-binding protein, results in embryonic lethality. J Biol Chem 275:14779–14782

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. D. Fondell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this chapter

Cite this chapter

Belakavadi, M., Fondell, J.D. (2006). Role of the Mediator complex in nuclear hormone receptor signaling. In: Amara, S., et al. Reviews of Physiology, Biochemistry and Pharmacology. Reviews of Physiology, Biochemistry and Pharmacology, vol 156. Springer, Berlin, Heidelberg. https://doi.org/10.1007/s10254-005-0002-0

Download citation

Publish with us

Policies and ethics