Skip to main content

Pseudomonas aeruginosa ExoS and ExoT

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 152))

Abstract

ExoS and ExoT are bi-functional type-III cytotoxins of Pseudomonas aeruginosa that share 76% primary amino acid homology and contain N-terminal RhoGAP domains and C-terminal ADP-ribosylation domains. The Rho GAP activities of ExoS and ExoT appear to be biochemically and biologically identical, targeting Rho, Rac, and Cdc42. Expression of the RhoGAP domain in mammalian cells results in the disruption of the actin cytoskeleton and interference of phagocytosis. Expression of the ADP-ribosyltransferase domain of ExoS elicits a cytotoxic phenotype in cultured cells, while expression of ExoT appears to interfere with host cell phagocytic activity. Recent studies showed that ExoS and ExoT ADP-ribosylate different substrates. While ExoS has poly-substrate specificity and can ADP-ribosylate numerous host proteins, ExoT ADP-ribosylates a more restricted subset of host proteins including the Crk proteins. Protein modeling predicts that electrostatic interactions contribute to the substrate specificity of the ADP-ribosyltransferase domains of ExoS and ExoT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

GAP:

GTPase activating protein

ADP-r:

Adenosine diphosphate ribose

MLD:

Membrane localization domain

FAS:

Factor activating exoenzyme S

Crk:

CT-10 regulator of kinase

SBTI:

Soybean trypsin inhibitor

GEF:

Guanine nucleotide exchange factor

References

  • Black DS, Marie-Cardine A, Schraven B, Bliska JB (2000) The Yersinia tyrosine phosphatase YopH targets a novel adhesion-regulated signalling complex in macrophages” Cell Microbiol 2(5):401–414

    Article  PubMed  CAS  Google Scholar 

  • Blocker A, Jouihri N, Larquet E, Gounon P, Ebel F, Parsot C, Sansonetti P, Allaoui A (2001) Structure and composition of the Shigella flexneri “needle complex,” a part of its type III secreton” Mol Microbiol 39(3):652–663

    Article  PubMed  CAS  Google Scholar 

  • Burton EA, Plattner R, Pendergast AM (2003) Abl tyrosine kinases are required for infection by Shigella flexneri” EMBO J 22(20):5471–5479

    Article  PubMed  CAS  Google Scholar 

  • Coburn J (1992) Pseudomonas aeruginosa exoenzyme S. Curr Top Microbiol Immunol 175:133–143

    PubMed  CAS  Google Scholar 

  • Coburn J and Gill DM (1991) ADP-ribosylation of p21ras and related proteins by Pseudomonas aeruginosa exoenzyme S. Infect Immun 59(11):4259–4262

    PubMed  CAS  Google Scholar 

  • Coburn J, Dillon ST, Iglewski BH, Gill DM (1989) Exoenzyme S of Pseudomonas aeruginosa ADP-ribosylates the intermediate filament protein vimentin. Infect Immun 57(3):996–998

    PubMed  CAS  Google Scholar 

  • Coburn J, Wyatt RT, Iglewski BH, Gill DM (1989) Several GTP-binding proteins, including p21c-H-ras, are preferred substrates of Pseudomonas aeruginosa exoenzyme S. J Biol Chem 264(15):9004–9008

    PubMed  CAS  Google Scholar 

  • Coburn J, Kane AV, Feig L, Gill DM (1991) Pseudomonas aeruginosa exoenzyme S requires a eukaryotic protein for ADP-ribosyltransferase activity. J Biol Chem 266(10):6438–6446

    PubMed  CAS  Google Scholar 

  • Cowell BA, Chen DY, Frank DW, Vallis AJ, Fleiszig SM (2000) ExoT of cytotoxic Pseudomonas aeruginosa prevents uptake by corneal epithelial cells” Infect Immun 68(1):403–406

    Article  PubMed  CAS  Google Scholar 

  • Finck-Barbancon V, Goranson J, Zhu L, Sawa T, Wiener-Kronish JP, Fleiszig SM, Wu C, Mende-Mueller L, Frank DW (1997) ExoU expression by Pseudomonas aeruginosa correlates with acute cytotoxicity and epithelial injury. Mol Microbiol 25(3):547–557

    Article  PubMed  CAS  Google Scholar 

  • Fleiszig SM, Wiener-Kronish JP, Miyazaki H, Vallas V, Mostov KE, Kanada D, Sawa T, Yen TS, Frank DW (1997) Pseudomonas aeruginosa-mediated cytotoxicity and invasion correlate with distinct genotypes at the loci encoding exoenzyme S. Infect Immun 65(2):579–586

    PubMed  CAS  Google Scholar 

  • Frank DW (1997) The exoenzyme S regulon of Pseudomonas aeruginosa. Mol Microbiol 26(4):621–629

    Article  PubMed  CAS  Google Scholar 

  • Frithz-Lindsten E, Du Y, Rosqvist R, Forsberg A (1997) Intracellular targeting of exoenzyme S of Pseudomonas aeruginosa via type III-dependent translocation induces phagocytosis resistance, cytotoxicity and disruption of actin microfilaments. Mol Microbiol 25(6):1125–1139

    Article  PubMed  CAS  Google Scholar 

  • Fu H, Coburn J, Collier RJ (1993) The eukaryotic host factor that activates exoenzyme S of Pseudomonas aeruginosa is a member of the 14-3-3 protein family. Proc Natl Acad Sci U S A 90(6):2320–2324

    Article  PubMed  CAS  Google Scholar 

  • Ganesan AK, Frank DW, Misra RP, Schmidt G, Barbieri JT (1998) Pseudomonas aeruginosa exoenzyme S ADP-ribosylates Ras at multiple sites. J Biol Chem 273(13):7332–7337

    Article  PubMed  CAS  Google Scholar 

  • Ganesan AK, Mende-Mueller L, Selzer J, Barbieri JT (1999) Pseudomonas aeruginosa exoenzyme S, a double ADP-ribosyltransferase, resembles vertebrate mono-ADP-ribosyltransferases. J Biol Chem 274(14):9503–9508

    Article  PubMed  CAS  Google Scholar 

  • Garrity-Ryan L, Kazmierczak B, Kowal R, Comolli J, Hauser A, Engel JN (2000) The arginine finger domain of ExoT contributes to actin cytoskeleton disruption and inhibition of internalization of Pseudomonas aeruginosa by epithelial cells and macrophages. Infect Immun 68(12):7100–7113

    Article  PubMed  CAS  Google Scholar 

  • Geiser TK, Kazmierczak BI, Garrity-Ryan LK, Matthay MA, Engel JN (2001) Pseudomonas aeruginosa ExoT inhibits in vitro lung epithelial wound repair. Cell Microbiol 3(4):223–236

    Article  PubMed  CAS  Google Scholar 

  • Goehring UM, Schmidt G, Pederson KJ, Aktories K, Barbieri JT (1999) The N-terminal domain of Pseudomonas aeruginosa exoenzyme S is a GTPase-activating protein for Rho GTPases. J Biol Chem 274(51):36369–36372

    Article  PubMed  CAS  Google Scholar 

  • Han S, Craig JA, Putnam CD, Carozzi NB, Tainer JA (1999) Evolution and mechanism from structures of an ADP-ribosylating toxin and NAD complex. Nat Struct Biol 6(10):932–936

    Article  PubMed  CAS  Google Scholar 

  • Han S, Arvai AS, Clancy SB, Tainer JA (2001) Crystal structure and novel recognition motif of rho ADP-ribosylating C3 exoenzyme from Clostridium botulinum: structural insights for recognition specificity and catalysis. J Mol Biol 305(1):95–107

    Article  PubMed  CAS  Google Scholar 

  • Henriksson ML, Troller U, Hallberg B (2000) 14-3-3 proteins are required for the inhibition of Ras by exoenzyme S. Biochem J 349 Pt 3:697–701

    PubMed  CAS  Google Scholar 

  • Iglewski BH, Sadoff J, Bjorn MJ, Maxwell ES (1978) Pseudomonas aeruginosa exoenzyme S: an adenosine diphosphate ribosyltransferase distinct from toxin A. Proc Natl Acad Sci U S A 75(7):3211–3215

    Article  PubMed  CAS  Google Scholar 

  • Jia J, Alaoui-El-Azher M, Chow M, Chambers TC, Baker H, Jin S (2003) c-Jun NH2-terminal kinase-mediated signaling is essential for Pseudomonas aeruginosa ExoS-induced apoptosis. Infect Immun 71(6):3361–3370

    Article  PubMed  CAS  Google Scholar 

  • Kaufman MR, Jia J, Zeng L, Ha U, Chow M, Jin S (2000) Pseudomonas aeruginosa mediated apoptosis requires the ADP-ribosylating activity of exoS. Microbiology 146 (Pt 10):2531–2541

    PubMed  CAS  Google Scholar 

  • Kazmierczak BI and Engel JN (2002) Pseudomonas aeruginosa ExoT acts in vivo as a GTPase-activating protein for RhoA, Rac1, and Cdc42. Infect Immun 70(4):2198–2205

    Article  PubMed  CAS  Google Scholar 

  • Knight DA, Finck-Barbancon V, Kulich SM, Barbieri JT (1995) Functional domains of Pseudomonas aeruginosa exoenzyme S. Infect Immun 63(8):3182–3186

    PubMed  CAS  Google Scholar 

  • Krall R, Schmidt G, Aktories K, Barbieri JT (2000) Pseudomonas aeruginosa ExoT is a Rho GTPase-activating protein. Infect Immun 68(10):6066–6068

    Article  PubMed  CAS  Google Scholar 

  • Krall R, Sun J, Pederson KJ, Barbieri JT (2002) In vivo rho GTPase-activating protein activity of Pseudomonas aeruginosa cytotoxin ExoS. Infect Immun 70(1):360–367

    Article  PubMed  CAS  Google Scholar 

  • Krall R, Zhang Y, Barbieri JT (2004) Intracellular membrane localization of pseudomonas ExoS and Yersinia YopE in mammalian cells. J Biol Chem 279(4):2747–2753

    Article  PubMed  CAS  Google Scholar 

  • Kulich SM, Frank DW, Barbieri JT (1993) Purification and characterization of exoenzyme S from Pseudomonas aeruginosa 388. Infect Immun 61(1):307–313

    PubMed  CAS  Google Scholar 

  • Kulich SM, Yahr TL, Mende-Mueller LM, Barbieri JT, Frank DW (1994) Cloning the structural gene for the 49-kDa form of exoenzyme S (exoS) from Pseudomonas aeruginosa strain 388. J Biol Chem 269(14):10431–10437

    PubMed  CAS  Google Scholar 

  • Lanotte P, Watt S, Mereghetti L, Dartiguelongue N, Rastegar-Lari A, Goudeau A, Quentin R (2004) Genetic features of Pseudomonas aeruginosa isolates from cystic fibrosis patients compared with those of isolates from other origins. J Med Microbiol 53(1):73–81

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Kulich SM, Barbieri JT (1996) Identification of glutamic acid 381 as a candidate active site residue of Pseudomonas aeruginosa exoenzyme S. Biochemistry 35(8):2754–2758

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Yahr TL, Frank DW, Barbieri JT (1997) Biochemical relationships between the 53-kilodalton (Exo53) and 49-kilodalton (ExoS) forms of exoenzyme S of Pseudomonas aeruginosa. J Bacteriol 179(5):1609–1613

    PubMed  CAS  Google Scholar 

  • Lomholt JA, Poulsen K, Kilian M (2001) Epidemic population structure of Pseudomonas aeruginosa: evidence for a clone that is pathogenic to the eye and that has a distinct combination of virulence factors. Infect Immun 69(10):6284–6295

    Article  PubMed  CAS  Google Scholar 

  • Marchalonis JJ, Schluter SF, Bernstein RM, Hohman VS (1998) Antibodies of sharks: revolution and evolution. Immunol Rev 166:103–122

    Article  PubMed  CAS  Google Scholar 

  • Neyfakh AA (2002) Mystery of multidrug transporters: the answer can be simple. Mol Microbiol 44(5):1123–1130

    Article  PubMed  CAS  Google Scholar 

  • Nicas, TI and Iglewski BH (1984) Isolation and characterization of transposon-induced mutants of Pseudomonas aeruginosa deficient in production of exoenzyme S. Infect Immun 45(2):470–474

    PubMed  CAS  Google Scholar 

  • Pederson KJ, Vallis AJ, Aktories K, Frank DW, Barbieri JT (1999) The amino-terminal domain of Pseudomonas aeruginosa ExoS disrupts actin filaments via small-molecular-weight GTP-binding proteins. Mol Microbiol 32(2):393–401

    Article  PubMed  CAS  Google Scholar 

  • Pederson KJ, Pal S, Vallis AJ, Frank DW, Barbieri JT (2000) Intracellular localization and processing of Pseudomonas aeruginosa ExoS in eukaryotic cells. Mol Microbiol 37(2):287–299

    Article  PubMed  CAS  Google Scholar 

  • Pederson KJ, Krall R, Riese MJ, Barbieri JT (2002) Intracellular localization modulates targeting of ExoS, a type III cytotoxin, to eukaryotic signalling proteins. Mol Microbiol 46(5):1381–1390

    Article  PubMed  CAS  Google Scholar 

  • Persson C, Carballeira N, Wolf-Watz H, Fallman M (1997) The PTPase YopH inhibits uptake of Yersinia, tyrosine phosphorylation of p130Cas and FAK, and the associated accumulation of these proteins in peripheral focal adhesions. EMBO J 16(9):2307–2318

    Article  Google Scholar 

  • Petosa C, Masters SC, Bankston LA, Pohl J, Wang B, Fu H, Liddington RC (1998) 14-3-3zeta binds a phosphorylated Raf peptide and an unphosphorylated peptide via its conserved amphipathic groove. J Biol Chem 273(26):16305–16310

    Article  PubMed  CAS  Google Scholar 

  • Radke J, Pederson KJ, Barbieri JT (1999) Pseudomonas aeruginosa exoenzyme S is a biglutamic acid ADP-ribosyltransferase. Infect Immun 67(3):1508–1510

    PubMed  CAS  Google Scholar 

  • Riese MJ and Barbieri JT (2002) Membrane localization contributes to the in vivo ADP-ribosylation of Ras by Pseudomonas aeruginosa ExoS. Infect Immun 70(4):2230–2232

    Article  PubMed  CAS  Google Scholar 

  • Riese MJ, Wittinghofer A, Barbieri JT (2001) ADP ribosylation of Arg41 of Rap by ExoS inhibits the ability of Rap to interact with its guanine nucleotide exchange factor, C3G. Biochemistry 40(11):3289–3294

    Article  PubMed  CAS  Google Scholar 

  • Riese MJ, Goehring UM, Ehrmantraut ME, Moss J, Barbieri JT, Aktories K, Schmidt G (2002) Auto-ADP-ribosylation of Pseudomonas aeruginosa ExoS. J Biol Chem 277(14):12082–12088

    Article  PubMed  CAS  Google Scholar 

  • Sato H, Frank DW, Hillard CJ, Feix JB, Pankhaniya RR, Moriyama K, Finck-Barbancon V, Buchaklian A, Lei M, et al. (2003) The mechanism of action of the Pseudomonas aeruginosa-encoded type III cytotoxin, ExoU. EMBO J 22(12):2959–2969

    Article  PubMed  CAS  Google Scholar 

  • Sun J and Barbieri JT (2003) Pseudomonas aeruginosa ExoT ADP-ribosylates CT10 regulator of kinase (Crk) proteins. J Biol Chem 278(35):32794–32800

    Article  PubMed  CAS  Google Scholar 

  • Sun J and Barbieri JT (2004) How bacterial ADP-ribosylating toxins recognize substrates. Nat Struct Mol Biol (in press)

    Google Scholar 

  • Sundin C, Henriksson ML, Hallberg B, Forsberg A, Frithz-Lindsten E (2001) Exoenzyme T of Pseudomonas aeruginosa elicits cytotoxicity without interfering with Ras signal transduction. Cell Microbiol 3(4):237–246

    Article  PubMed  CAS  Google Scholar 

  • Vallis AJ, Finck-Barbancon V, Yahr TL, Frank DW (1999) Biological effects of Pseudomonas aeruginosa type III-secreted proteins on CHO cells. Infect Immun 67(4):2040–2044

    PubMed  CAS  Google Scholar 

  • Van Delden C and Iglewski BH (1998) Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerg Infect Dis 4(4):551–560

    Article  PubMed  Google Scholar 

  • Wurtele M, Renault L, Barbieri JT, Wittinghofer A, Wolf E (2001) Structure of the ExoS GTPase activating domain. FEBS Lett 491(1–2):26–29

    Article  PubMed  CAS  Google Scholar 

  • Wurtele M, Wolf E, Pederson KJ, Buchwald G, Ahmadian MR, Barbieri JT, Wittinghofer A (2001) How the Pseudomonas aeruginosa ExoS toxin downregulates Rac. Nat Struct Biol 8(1):23–26

    Article  PubMed  CAS  Google Scholar 

  • Yahr TL, Barbieri JT, Frank DW (1996) Genetic relationship between the 53-and 49-kilodalton forms of exoenzyme S from Pseudomonas aeruginosa. J Bacteriol 178(5):1412–1419

    PubMed  CAS  Google Scholar 

  • Yahr TL, Vallis AJ, Hancock MK, Barbieri JT, Frank DW (1998) ExoY, an adenylate cyclase secreted by the Pseudomonas aeruginosa type III system. Proc Natl Acad Sci U S A 95(23):13899–13904

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Wang H, Liu D, Liddington R, Fu H (1997) Raf-1 kinase and exoenzyme S interact with 14-3-3zeta through a common site involving lysine 49. J Biol Chem 272(21):13717–13724

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Wang H, Masters SC, Wang B, Barbieri JT, Fu H (1999) Residues of 14-3-3 zeta required for activation of exoenzyme S of Pseudomonas aeruginosa. Biochemistry 38(37):12159–12164

    Article  PubMed  CAS  Google Scholar 

  • Zheleznova EE, Markham PN, Neyfakh AA, Brennan RG (1999) Structural basis of multidrug recognition by BmrR, a transcription activator of a multidrug transporter. Cell 96(3):353–362

    Article  PubMed  CAS  Google Scholar 

  • Zheleznova EE, Markham P, Edgar R, Bibi E, Neyfakh AA, Brennan RG (2000) A structure-based mechanism for drug binding by multidrug transporters. Trends Biochem Sci 25(2):39–43

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. T. Barbieri .

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag

About this chapter

Cite this chapter

Barbieri, J.T., Sun, J. (2004). Pseudomonas aeruginosa ExoS and ExoT. In: Reviews of Physiology, Biochemistry and Pharmacology. Reviews of Physiology, Biochemistry and Pharmacology, vol 152. Springer, Berlin, Heidelberg. https://doi.org/10.1007/s10254-004-0031-7

Download citation

Publish with us

Policies and ethics