Skip to main content

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 152))

Abstract

Bacillus anthracis, the etiological agent of anthrax, secretes three polypeptides that assemble into toxic complexes on the cell surfaces of the host it infects. One of these polypeptides, protective antigen (PA), binds to the integrin-like domains of ubiquitously expressed membrane proteins of mammalian cells. PA is then cleaved by membrane endoproteases of the furin family. Cleaved PA molecules assemble into heptamers, which can then associate with the two other secreted polypeptides: edema factor (EF) and/or lethal factor (LF). The heptamers of PA are relocalized to lipid rafts where they are quickly endocytosed and routed to an acidic compartment. The low pH triggers a conformational change in the heptamers, resulting in the formation of cation-specific channels and the translocation of EF/LF. EF is a calcium- and calmodulin-dependent adenylate cyclase that dramatically raises the intracellular concentration of cyclic adenosine monophosphate (cAMP). LF is a zinc-dependent endoprotease that cleaves the amino terminus of mitogen-activated protein kinase kinases (Meks). Cleaved Meks cannot bind to their substrates and have reduced kinase activity, resulting in alterations of the signaling pathways they govern. The structures of PA, PA heptamer, EF, and LF have been solved and much is now known about the molecular details of the intoxication mechanism. The in vivo action of the toxins, on the other hand, is still poorly understood and hotly debated. A better understanding of the toxins will help in the design of much-needed anti-toxin drugs and the development of new toxin-based medical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

CMG2:

Capillary morphogenesis protein 2

DTA:

Diphtheria toxin A chain

EF:

Edema factor

EFn:

N-terminal fragment of EF

ETx:

Edema toxin

GR:

Glucocorticoid receptors

GSK3β:

Glycogen synthase kinase 3β

I domain:

Integrin-like domain

iNOS:

Inducible nitric oxide synthase

LF:

Lethal factor

LFn:

N-terminal fragment of LF

LTx:

Lethal toxin

MAPK:

Mitogen-activated protein kinase

Mek:

MAPK kinases

PA:

Protective antigen

PA20 :

20-kDa N-terminal fragment of PA

PA63 :

63-kDa C-terminal fragment of PA

TEM8:

Tumor endothelial marker 8

References

  • Abrami L, Liu S, Cosson P, Leppla SH, van der Goot FG (2003) Anthrax toxin triggers endocytosis of its receptor via a lipid raft-mediated clathrin-dependent process. J Cell Biol 160:321–328

    PubMed  CAS  Google Scholar 

  • Abramova FA, Grinberg LM, Yampolskaya OV, Walker DH (1993) Pathology of inhalational anthrax in 42 cases from the Sverdlovsk outbreak of 1979. Proc Natl Acad Sci U S A 90:2291–2294

    PubMed  CAS  Google Scholar 

  • Agrawal A, Lingappa J, Leppla SH, Agrawal S, Jabbar A, Quinn C, Pulendran B (2003) Impairment of dendritic cells and adaptive immunity by anthrax lethal toxin. Nature 424:329–334

    PubMed  CAS  Google Scholar 

  • Arora N, Leppla SH (1993) Residues 1-254 of anthrax toxin lethal factor are sufficient to cause cellular uptake of fused polypeptides. J Biol Chem 268:3334–3341

    PubMed  CAS  Google Scholar 

  • Ascenzi P, Visca P, Ippolito G, Spallarossa A, Bolognesi M, Montecucco C (2002) Anthrax toxin: a tripartite lethal combination. FEBS Lett 531:384–388

    PubMed  CAS  Google Scholar 

  • Ballard JD, Collier RJ, Starnbach MN (1996) Anthrax toxin-mediated delivery of a cytotoxic T-cell epitope in vivo. Proc Natl Acad Sci U S A 93:12531–12534

    PubMed  CAS  Google Scholar 

  • Beall FA, Dalldorf FG (1966) The pathogenesis of the lethal effect of anthrax toxin in the rat. J Infect Dis 116:377–389

    PubMed  CAS  Google Scholar 

  • Beauregard KE, Wimer-Mackin S, Collier RJ, Lencer WI (1999) Anthrax toxin entry into polarized epithelial cells. Infect Immun 67:3026–3030

    PubMed  CAS  Google Scholar 

  • Beauregard KE, Collier RJ, Swanson JA (2000) Proteolytic activation of receptor-bound anthrax protective antigen on macrophages promotes its internalization. Cell Microbiol 2:251–258

    PubMed  CAS  Google Scholar 

  • Benson EL, Huynh PD, Finkelstein A, Collier RJ (1998) Identification of residues lining the anthrax protective antigen channel. Biochemistry 37:3941–3948

    PubMed  CAS  Google Scholar 

  • Bhatnagar R, Friedlander AM (1994) Protein synthesis is required for expression of anthrax lethal toxin cytotoxicity. Infect Immun 62:2958–2962

    PubMed  CAS  Google Scholar 

  • Bhatnagar R, Singh Y, Leppla SH, Friedlander AM (1989) Calcium is required for the expression of anthrax lethal toxin activity in the macrophagelike cell line J774A.1. Infect Immun 57:2107–2114

    PubMed  CAS  Google Scholar 

  • Bhatnagar R, Ahuja N, Goila R, Batra S, Waheed SM, Gupta P (1999) Activation of phospholipase C and protein kinase C is required for expression of anthrax lethal toxin cytotoxicity in J774A.1 cells. Cellular Signalling 11:111–116

    PubMed  CAS  Google Scholar 

  • Blanke SR, Milne JC, Benson EL, Collier RJ (1996) Fused polycationic peptide mediates delivery of diphtheria toxin A chain to the cytosol in the presence of anthrax protective antigen. Proc Natl Acad Sci U S A 93:8437–8442

    PubMed  CAS  Google Scholar 

  • Blaustein RO, Finkelstein A (1990) Diffusion limitation in the block by symmetric tetraalkylammonium ions of anthrax toxin channels in planar phospholipid bilayer membranes. J Gen Physiol 96:943–957

    PubMed  CAS  Google Scholar 

  • Blaustein RO, Koehler TM, Collier RJ, Finkelstein A (1989) Anthrax toxin: channel-forming activity of protective antigen in planar phospholipid bilayers. Proc Natl Acad Sci U S A 86:2209–2213

    PubMed  CAS  Google Scholar 

  • Bonventre PF, Sueoka W, True CW, Klein F, Lincoln R (1967) Attempts to implicate the central nervous system as a primary site of action for Bacillus anthracis lethal toxin. Fed Proc 26:1549–1553

    PubMed  CAS  Google Scholar 

  • Bradley KA, Mogridge J, Mourez M, Collier RJ, Young JA (2001) Identification of the cellular receptor for anthrax toxin. Nature 414:225–229

    PubMed  CAS  Google Scholar 

  • Bradley KA, Mogridge J, Jonah G, Rainey A, Batty S, Young JA (2003) Binding of anthrax toxin to its receptor is similar to alpha integrin-ligand interactions. J Biol Chem 278:49342–49347

    PubMed  CAS  Google Scholar 

  • Brossier F, Sirard JC, Guidi-Rontani C, Duflot E, Mock M (1999) Functional analysis of the carboxy-terminal domain of Bacillus anthracis protective antigen. Infect Immun 67:964–967

    PubMed  CAS  Google Scholar 

  • Brossier F, Weber-Levy M, Mock M, Sirard JC (2000) Protective antigen-mediated antibody response against a heterologous protein produced in vivo by Bacillus anthracis. Infect Immun 68:5731–5734

    PubMed  CAS  Google Scholar 

  • Brossier F, Levy M, Mock M (2002) Anthrax spores make an essential contribution to vaccine efficacy. Infect Immun 70:661–664

    PubMed  CAS  Google Scholar 

  • Chauhan V, Bhatnagar R (2002) Identification of amino acid residues of anthrax protective antigen involved in binding with lethal factor. Infect Immun 70:4477–4484

    PubMed  CAS  Google Scholar 

  • Chopra AP, Boone SA, Liang X, Duesbery NS (2003) Anthrax lethal factor proteolysis and inactivation of MAPK kinase. J Biol Chem 278:9402–9406

    PubMed  CAS  Google Scholar 

  • Christopher GW, Cieslak TJ, Pavlin JA, Eitzen EM Jr (1997) Biological warfare. A historical perspective. JAMA 278:412–417

    PubMed  CAS  Google Scholar 

  • Collier RJ, Young JA (2003) Anthrax toxin. Annu Rev Cell Dev Biol 19:45–70

    PubMed  CAS  Google Scholar 

  • Croney JC, Cunningham KM, Collier RJ, Jameson DM (2003) Fluorescence resonance energy transfer studies on anthrax lethal toxin. FEBS Lett 550:175–178

    PubMed  CAS  Google Scholar 

  • Cui X, Moayeri M, Li Y, Li X, Haley M, Fitz Y, Correa-Araujo R, Banks SM, Leppla SH, Eichacker PQ (2004) Lethality during continuous anthrax lethal toxin infusion is associated with circulatory shock but not inflammatory cytokine or nitric oxide release in rats. Am J Physiol Regul Integr Comp Physiol 286:R699–R709

    PubMed  CAS  Google Scholar 

  • Cummings RT, Salowe SP, Cunningham BR, Wiltsie J, Park YW, Sonatore LM, Wisniewski D, Douglas CM, Hermes JD, Scolnick EM (2002) A peptide-based fluorescence resonance energy transfer assay for Bacillus anthracis lethal factor protease. Proc Natl Acad Sci U S A 99:6603–6606

    PubMed  CAS  Google Scholar 

  • Cunningham K, Lacy DB, Mogridge J, Collier RJ (2002) Mapping the lethal factor and edema factor binding sites on oligomeric anthrax protective antigen. Proc Natl Acad Sci U S A 99:7049–7053

    PubMed  CAS  Google Scholar 

  • Dalldorf FG, Beall FA (1967) Capillary thrombosis as a cause of death in experimental anthrax. Arch Pathol 83:154–161

    PubMed  CAS  Google Scholar 

  • Dang O, Navarro L, Anderson K, David M (2004) Cutting edge: anthrax lethal toxin inhibits activation of IFN-regulatory factor 3 by lipopolysaccharide. J Immunol 172:747–751

    PubMed  CAS  Google Scholar 

  • Dixon TC, Fadl AA, Koehler TM, Swanson JA, Hanna PC (2000) Early Bacillus anthracis-macrophage interactions: intracellular survival and escape. Cell Microbiol 2:453–463

    PubMed  CAS  Google Scholar 

  • Drum CL, Yan SZ, Bard J, Shen YQ, Lu D, Soelaiman S, Grabarek Z, Bohm A, Tang WJ (2002) Structural basis for the activation of anthrax adenylyl cyclase exotoxin by calmodulin. Nature 415:396–402

    PubMed  CAS  Google Scholar 

  • Duesbery NS, Webb CP, Leppla SH, Gordon VM, Klimpel KR, Copeland TD, Ahn NG, Oskarsson MK, Fukasawa K, Paull KD, Vande Woude GF (1998) Proteolytic inactivation of MAP-kinase-kinase by anthrax lethal factor. Science 280:734–737

    PubMed  CAS  Google Scholar 

  • Duesbery NS, Resau J, Webb CP, Koochekpour S, Koo HM, Leppla SH, Vandes Woude GF (2001) Suppression of ras-mediated transformation and inhibition of tumor growth and angiogenesis by anthrax lethal factor, a proteolytic inhibitor of multiple MEK pathways. Proc Natl Acad Sci U S A 98:4089–4094

    PubMed  CAS  Google Scholar 

  • Erwin JL, DaSilva LM, Bavari S, Little SF, Friedlander AM, Chanh TC (2001) Macrophage-derived cell lines do not express proinflammatory cytokines after exposure to Bacillus anthracis lethal toxin. Infect Immun 69:1175–1177

    PubMed  CAS  Google Scholar 

  • Escuyer V, Collier RJ (1991) Anthrax protective antigen interacts with a specific receptor on the surface of CHO-K1 cells. Infect Immun 59:3381–3386

    PubMed  CAS  Google Scholar 

  • Ezzell JW, Ivins BE, Leppla SH (1984) Immunoelectrophoretic analysis, toxicity, and kinetics of in vitro production of the protective antigen and lethal factor components of Bacillus anthracis toxin. Infect Immun 45:761–767

    PubMed  CAS  Google Scholar 

  • Ezzell JW Jr, Abshire TG (1992) Serum protease cleavage of Bacillus anthracis protective antigen. Biochemistry 31:3215–3222

    Google Scholar 

  • Flick-Smith HC, Walker NJ, Gibson P, Bullifent H, Hayward S, Miller J, Titball RW, Williamson ED (2002) A recombinant carboxy-terminal domain of the protective antigen of Bacillus anthracis protects mice against anthrax infection. Infect Immun 70:1653–1656

    PubMed  CAS  Google Scholar 

  • Friedlander AM (1986) Macrophages are sensitive to anthrax lethal toxin through an acid-dependent process. J Biol Chem 261:7123–7126

    PubMed  CAS  Google Scholar 

  • Friedlander AM (1999) Clinical aspects, diagnosis and treatment of anthrax. J Appl Microbiol 87:303

    PubMed  Google Scholar 

  • Friedlander AM, Welkos SL, Ivins BE (2002) Anthrax vaccines. Curr Top Microbiol Immunol 271:33–60

    PubMed  CAS  Google Scholar 

  • Gao-Sheridan S, Zhang S, Collier RJ (2003) Exchange characteristics of calcium ions bound to anthrax protective antigen. Biochem Biophys Res Commun 300:61–64

    PubMed  CAS  Google Scholar 

  • Gladstone GP (1946) Immunity to anthrax protective antigen present in cell-free culture filtrates. Br J Exp Pathol 27:394–418

    Google Scholar 

  • Gordon VM, Leppla SH, Hewlett EL (1988) Inhibitors of receptor-mediated endocytosis block the entry of Bacillus anthracis adenylate cyclase toxin but not that of Bordetella pertussis adenylate cyclase toxin. Infect Immun 56:1066–1069

    PubMed  CAS  Google Scholar 

  • Gordon VM, Klimpel KR, Arora N, Henderson MA, Leppla SH (1995) Proteolytic activation of bacterial toxins by eukaryotic cells is performed by furin and by additional cellular proteases. Infect Immun 63:82–87

    PubMed  CAS  Google Scholar 

  • Guidi-Rontani C (2002) The alveolar macrophage: the Trojan horse of Bacillus anthracis. Trends Microbiol 10:405–409

    PubMed  CAS  Google Scholar 

  • Guidi-Rontani C, Levy M, Ohayon H, Mock M (2001) Fate of germinated Bacillus anthracis spores in primary murine macrophages. Mol Microbiol 42:931–938

    PubMed  CAS  Google Scholar 

  • Gupta PK, Chandra H, Gaur R, Kurupati RK, Chowdhury S, Tandon V, Singh Y, Maithal K (2003) Conformational fluctuations in anthrax protective antigen: a possible role of calcium in the folding pathway of the protein. FEBS Lett 554:505–510

    PubMed  CAS  Google Scholar 

  • Hanna PC, Acosta D, Collier RJ (1993) On the role of macrophages in anthrax. Proc Natl Acad Sci U S A 90:10198–10201

    PubMed  CAS  Google Scholar 

  • Hanna PC, Kruskal BA, Ezekowitz RA, Bloom BR, Collier RJ (1994) Role of macrophage oxidative burst in the action of anthrax lethal toxin. Mol Med 1:7–18

    PubMed  CAS  Google Scholar 

  • Haug G, Leemhuis J, Tiemann D, Meyer DK, Aktories K, Barth H (2003) The host cell chaperone Hsp90 is essential for translocation of the binary Clostridium botulinum C2 toxin into the cytosol. J Biol Chem 278:32266–32274

    PubMed  CAS  Google Scholar 

  • Henrich S, Cameron A, Bourenkov GP, Kiefersauer R, Huber R, Lindberg I, Bode W, Than ME (2003) The crystal structure of the proprotein processing proteinase furin explains its stringent specificity. Nat Struct Biol 10:520–526

    PubMed  CAS  Google Scholar 

  • Hoover DL, Friedlander AM, Rogers LC, Yoon IK, Warren RL, Cross AS (1994) Anthrax edema toxin differentially regulates lipopolysaccharide-induced monocyte production of tumor necrosis factor alpha and interleukin-6 by increasing intracellular cyclic AMP. Infect Immun 62:4432–4439

    PubMed  CAS  Google Scholar 

  • Jernigan JA, Stephens DS, Ashford DA, Omenaca C, Topiel MS, Galbraith M, Tapper M, Fisk TL, Zaki S, Popovic T, Meyer RF, Quinn CP, Harper SA, Fridkin SK, Sejvar JJ, Shepard CW, McConnell M, Guarner J, Shieh WJ, Malecki JM, Gerberding JL, Hughes JM, Perkins BA (2001) Bioterrorism-related inhalational anthrax: the first 10 cases reported in the United States. Emerg Infect Dis 7:933–944

    Article  PubMed  CAS  Google Scholar 

  • Kalns J, Scruggs J, Millenbaugh N, Vivekananda J, Shealy D, Eggers J, Kiel J (2002) TNF receptor 1, IL-1 receptor, and iNOS genetic knockout mice are not protected From anthrax infection. Biochem Biophys Res Commun 292:41–44

    PubMed  CAS  Google Scholar 

  • Karginov VA, Robinson TM, Riemenschneider J, Golding B, Kennedy M, Shiloach J, Alibek K (2004) Treatment of anthrax infection with combination of ciprofloxacin and antibodies to protective antigen of Bacillus anthracis. FEMS Immunol Med Microbiol 40:71–74

    PubMed  CAS  Google Scholar 

  • Kau JH, Lin CG, Huang HH, Hsu HL, Chen KC, Wu YP, Lin HC (2002) Calyculin A sensitive protein phosphatase is required for Bacillus anthracis lethal toxin induced cytotoxicity. Curr Microbiol 44:106–111

    PubMed  CAS  Google Scholar 

  • Keppie J, Smith H, Harris-Smith PW (1955) The chemical basis of the virulence of Bacillus anthracis. III: The role of terminal bacteraemia in death of guinea pigs from anthrax. Br J Exp Pathol 36:315–322

    PubMed  CAS  Google Scholar 

  • Kim SO, Jing Q, Hoebe K, Beutler B, Duesbery NS, Han J (2003) Sensitizing anthrax lethal toxin-resistant macrophages to lethal toxin-induced killing by tumor necrosis factor-alpha. J Biol Chem 278:7413–7421

    PubMed  CAS  Google Scholar 

  • Kirby JE (2004) Anthrax lethal toxin induces human endothelial cell apoptosis. Infect Immun 72:430–439

    PubMed  CAS  Google Scholar 

  • Klimpel KR, Arora N, Leppla SH (1994) Anthrax toxin lethal factor contains a zinc metalloprotease consensus sequence which is required for lethal toxin activity. Mol Microbiol 13:1093–1100

    PubMed  CAS  Google Scholar 

  • Kobiler D, Gozes Y, Rosenberg H, Marcus D, Reuveny S, Altboum Z (2002) Efficiency of protection of guinea pigs against infection with Bacillus anthracis spores by passive immunization. Infect Immun 70:544–560

    PubMed  CAS  Google Scholar 

  • Kochi SK, Martin I, Schiavo G, Mock M, Cabiaux V (1994a) The effects of pH on the interaction of anthrax toxin lethal and edema factors with phospholipid vesicles. Biochemistry 33:2604–2609

    PubMed  CAS  Google Scholar 

  • Kochi SK, Schiavo G, Mock M, Montecucco C (1994b) Zinc content of the Bacillus anthracis lethal factor. FEMS Microbiol Lett 124:343–348

    PubMed  CAS  Google Scholar 

  • Koehler TM (2002) Bacillus anthracis genetics and virulence gene regulation. Curr Top Microbiol Immunol 271:143–164

    PubMed  CAS  Google Scholar 

  • Koehler TM, Collier RJ (1991) Anthrax toxin protective antigen: low-pH-induced hydrophobicity and channel formation in liposomes. Mol Microbiol 5:1501–1506

    PubMed  CAS  Google Scholar 

  • Koriazova LK, Montal M (2003) Translocation of botulinum neurotoxin light chain protease through the heavy chain channel. Nat Struct Biol 10:13–18

    PubMed  CAS  Google Scholar 

  • Lacy DB, Collier RJ (2002) Structure and function of anthrax toxin. Curr Top Microbiol Immunol 271:61–85

    PubMed  CAS  Google Scholar 

  • Lacy DB, Mourez M, Fouassier A, Collier RJ (2002) Mapping the anthrax protective antigen binding site on the lethal and edema factors. J Biol Chem 277:3006–3010

    PubMed  CAS  Google Scholar 

  • Lacy DB, Wigelsworth DJ, Scobie HM, Young JA, Collier RJ (2004) Crystal structure of the von Willebrand factor A domain of human capillary morphogenesis protein 2: an anthrax toxin receptor. Proc Natl Acad Sci U S A 101:6367–6372

    PubMed  CAS  Google Scholar 

  • Leppla SH (1982) Anthrax toxin edema factor: a bacterial adenylate cyclase that increases cyclic AMP concentrations of eukaryotic cells. Proc Natl Acad Sci U S A 79:3162–3166

    PubMed  CAS  Google Scholar 

  • Little SF, Novak JM, Lowe JR, Leppla SH, Singh Y, Klimpel KR, Lidgerding BC, Friedlander AM (1996) Characterization of lethal factor binding and cell receptor binding domains of protective antigen of Bacillus anthracis using monoclonal antibodies. Microbiology 142:707–715

    Article  PubMed  CAS  Google Scholar 

  • Little SF, Ivins BE, Fellows PF, Friedlander AM (1997) Passive protection by polyclonal antibodies against Bacillus anthracis infection in guinea pigs. Infect Immun 65:5171–5175

    PubMed  CAS  Google Scholar 

  • Liu S, Leppla SH (2003) Cell surface tumor endothelium marker 8 cytoplasmic tail-independent anthrax toxin binding, proteolytic processing, oligomer formation, and internalization. J Biol Chem 278:5227–5234

    PubMed  CAS  Google Scholar 

  • Liu S, Bugge TH, Leppla SH (2001) Targeting of tumor cells by cell surface urokinase plasminogen activator-dependent anthrax toxin. J Biol Chem 276:17976–17984

    PubMed  CAS  Google Scholar 

  • Liu S, Aaronson H, Mitola DJ, Leppla SH, Bugge TH (2003) Potent antitumor activity of a urokinase-activated engineered anthrax toxin. Proc Natl Acad Sci U S A 100:657–662

    PubMed  CAS  Google Scholar 

  • Lu Y, Friedman R, Kushner N, Doling A, Thomas L, Touzjian N, Starnbach M, Lieberman J (2000) Genetically modified anthrax lethal toxin safely delivers whole HIV protein antigens into the cytosol to induce T cell immunity. Proc Natl Acad Sci U S A 97:8027–8032

    PubMed  CAS  Google Scholar 

  • Makino S, Uchida I, Terakado N, Sasakawa C, Yoshikawa M (1989) Molecular characterization and protein analysis of the cap region, which is essential for encapsulation in Bacillus anthracis. J Bacteriol 171:722–730

    PubMed  CAS  Google Scholar 

  • Manchee RJ, Broster MG, Anderson IS, Henstridge RM, Melling J (1983) Decontamination of Bacillus anthracis on Gruinard Island? Nature 303:239–240

    PubMed  CAS  Google Scholar 

  • Maynard JA, Maassen CB, Leppla SH, Brasky K, Patterson JL, Iverson BL, Georgiou G (2002) Protection against anthrax toxin by recombinant antibody fragments correlates with antigen affinity. Nat Biotechnol 20:597–601

    PubMed  CAS  Google Scholar 

  • McAllister RD, Singh Y, du Bois WD, Potter M, Boehm T, Meeker ND, Fillmore PD, Anderson LM, Poynter ME, Teuscher C (2003) Susceptibility to anthrax lethal toxin is controlled by three linked quantitative trait loci. Am J Pathol 163:1735–1741

    PubMed  CAS  Google Scholar 

  • Menard A, Altendorf K, Breves D, Mock M, Montecucco C (1996) The vacuolar ATPase proton pump is required for the cytotoxicity of Bacillus anthracis lethal toxin. FEBS Lett 386:161–164

    PubMed  CAS  Google Scholar 

  • Meselson M, Guillemin J, Hugh-Jones M, Langmuir A, Popova I, Shelokov A, Yampolskaya O (1994) The Sverdlovsk anthrax outbreak of 1979. Science 266:1202–1208

    PubMed  CAS  Google Scholar 

  • Miller CJ, Elliott JL, Collier RJ (1999) Anthrax protective antigen: prepore-to-pore conversion. Biochemistry 38:10432–10441

    PubMed  CAS  Google Scholar 

  • Milne JC, Collier RJ (1993) pH-dependent permeabilization of the plasma membrane of mammalian cells by anthrax protective antigen. Mol Microbiol 10:647–653

    PubMed  CAS  Google Scholar 

  • Milne JC, Furlong D, Hanna PC, Wall JS, Collier RJ (1994) Anthrax protective antigen forms oligomers during intoxication of mammalian cells. J Biol Chem 269:20607–20612

    PubMed  CAS  Google Scholar 

  • Milne JC, Blanke SR, Hanna PC, Collier RJ (1995) Protective antigen-binding domain of anthrax lethal factor mediates translocation of a heterologous protein fused to its amino-or carboxy-terminus. Mol Microbiol 15:661–666

    PubMed  CAS  Google Scholar 

  • Moayeri M, Leppla SH (2004) The roles of anthrax toxin in pathogenesis. Curr Opin Microbiol 7:19–24

    PubMed  CAS  Google Scholar 

  • Moayeri M, Haines D, Young HA, Leppla SH (2003) Bacillus anthracis lethal toxin induces TNF-alpha-independent hypoxia-mediated toxicity in mice. J Clin Invest 112:670–682

    PubMed  CAS  Google Scholar 

  • Mock M, Fouet A (2001) Anthrax. Annu Rev Microbiol 55:647–671

    PubMed  CAS  Google Scholar 

  • Mock M, Mignot T (2003) Anthrax toxins and the host: a story of intimacy. Cell Microbiol 5:15–23

    PubMed  CAS  Google Scholar 

  • Mogridge J, Mourez M, Collier RJ (2001) Involvement of domain 3 in oligomerization by the protective antigen moiety of anthrax toxin. J Bacteriol 183:2111–2116

    PubMed  CAS  Google Scholar 

  • Mogridge J, Cunningham K, Collier RJ (2002a) Stoichiometry of anthrax toxin complexes. Biochemistry 41:1079–1082

    PubMed  CAS  Google Scholar 

  • Mogridge J, Cunningham K, Lacy DB, Mourez M, Collier RJ (2002b) The lethal and edema factors of anthrax toxin bind only to oligomeric forms of the protective antigen. Proc Natl Acad Sci U S A 99:7045–7048

    PubMed  CAS  Google Scholar 

  • Mourez M, Kane RS, Mogridge J, Metallo S, Deschatelets P, Sellman BR, Whitesides GM, Collier RJ (2001) Designing a polyvalent inhibitor of anthrax toxin. Nat Biotechnol 19:958–961

    PubMed  CAS  Google Scholar 

  • Mourez M, Yan M, Lacy DB, Dillon L, Bentsen L, Marpoe A, Maurin C, Hotze E, Wigelsworth D, Pimental RA, Ballard JD, Collier RJ, Tweten RK (2003) Mapping dominant-negative mutations of anthrax protective antigen by scanning mutagenesis. Proc Natl Acad Sci U S A 100:13803–13808

    PubMed  CAS  Google Scholar 

  • Nanda A, Carson-Walter EB, Seaman S, Barber TD, Stampfl J, Singh S, Vogelstein B, Kinzler KW, St Croix B (2004) TEM8 interacts with the cleaved C5 domain of collagen alpha 3(VI). Cancer Res 64:817–820

    PubMed  CAS  Google Scholar 

  • Nassi S, Collier RJ, Finkelstein A (2002) PA63 channel of anthrax toxin: an extended beta-barrel. Biochemistry 41:1445–1450

    PubMed  CAS  Google Scholar 

  • Novak JM, Stein MP, Little SF, Leppla SH, Friedlander AM (1992) Functional characterization of protease-treated Bacillus anthracis protective antigen. J Biol Chem 267:17186–17193

    PubMed  CAS  Google Scholar 

  • Oh KJ, Senzel L, Collier RJ, Finkelstein A (1999) Translocation of the catalytic domain of diphtheria toxin across planar phospholipid bilayers by its own T domain. Proc Natl Acad Sci U S A 96:8467–8470

    PubMed  CAS  Google Scholar 

  • Panchal RG, Hermone AR, Nguyen TL, Wong TY, Schwarzenbacher R, Schmidt J, Lane D, McGrath C, Turk BE, Burnett J, Aman MJ, Little S, Sausville EA, Zaharevitz DW, Cantley LC, Liddington RC, Gussio R, Bavari S (2004) Identification of small molecule inhibitors of anthrax lethal factor. Nat Struct Mol Biol 11:67–72

    PubMed  CAS  Google Scholar 

  • Pannifer AD, Wong TY, Schwarzenbacher R, Renatus M, Petosa C, Bienkowska J, Lacy DB, Collier RJ, Park S, Leppla SH, Hanna P, Liddington RC (2001) Crystal structure of the anthrax lethal factor. Nature 414:229–233

    PubMed  CAS  Google Scholar 

  • Park JM, Greten FR, Li ZW, Karin M (2002) Macrophage apoptosis by anthrax lethal factor through p38 MAP kinase inhibition. Science 297:2048–2051

    PubMed  CAS  Google Scholar 

  • Pellizzari R, Guidi-Rontani C, Vitale G, Mock M, Montecucco C (1999) Anthrax lethal factor cleaves MKK3 in macrophages and inhibits the LPS/IFNgamma-induced release of NO and TNFalpha. FEBS Lett 462:199–204

    PubMed  CAS  Google Scholar 

  • Petosa C, Collier RJ, Klimpel KR, Leppla SH, Liddington RC (1997) Crystal structure of the anthrax toxin protective antigen. Nature 385:833–838

    PubMed  CAS  Google Scholar 

  • Pezard C, Berche P, Mock M (1991) Contribution of individual toxin components to virulence of Bacillus anthracis. Infect Immun 59:3472–3477

    PubMed  CAS  Google Scholar 

  • Popov SG, Villasmil R, Bernardi J, Grene E, Cardwell J, Popova T, Wu A, Alibek D, Bailey C, Alibek K (2002a) Effect of Bacillus anthracis lethal toxin on human peripheral blood mononuclear cells. FEBS Lett 527:211–215

    PubMed  CAS  Google Scholar 

  • Popov SG, Villasmil R, Bernardi J, Grene E, Cardwell J, Wu A, Alibek D, Bailey C, Alibek K (2002b) Lethal toxin of Bacillus anthracis causes apoptosis of macrophages. Biochem Biophys Res Commun 293:349–355

    PubMed  CAS  Google Scholar 

  • Popov SG, Popova TG, Grene E, Klotz F, Cardwell J, Bradburne C, Jama Y, Maland M, Wells J, Nalca A, Voss T, Bailey C, Alibek K (2004) Systemic cytokine response in murine anthrax. Cell Microbiol 6:225–233

    PubMed  CAS  Google Scholar 

  • Ratts R, Zeng H, Berg EA, Blue C, McComb ME, Costello CE, vanderSpek JC, Murphy JR (2003) The cytosolic entry of diphtheria toxin catalytic domain requires a host cell cytosolic translocation factor complex. J Cell Biol 160:1139–1150

    PubMed  CAS  Google Scholar 

  • Remmele NS, Klein F, Vick JA, Walker JS, Mahlandt BG, Lincoln RE (1968) Anthrax toxin: primary site of action. J Infect Dis 118:104–113

    PubMed  CAS  Google Scholar 

  • Rhie GE, Roehrl MH, Mourez M, Collier RJ, Mekalanos JJ, Wang JY (2003) A dually active anthrax vaccine that confers protection against both bacilli and toxins. Proc Natl Acad Sci U S A 100:10925–10930

    PubMed  CAS  Google Scholar 

  • Rosovitz MJ, Schuck P, Varughese M, Chopra AP, Mehra V, Singh Y, McGinnis LM, Leppla SH (2003) Alanine-scanning mutations in domain 4 of anthrax toxin protective antigen reveal residues important for binding to the cellular receptor and to a neutralizing monoclonal antibody. J Biol Chem 278:30936–30944

    PubMed  CAS  Google Scholar 

  • Salles II, Tucker AE, Voth DE, Ballard JD (2003) Toxin-induced resistance in Bacillus anthracis lethal toxin-treated macrophages. Proc Natl Acad Sci U S A 100:12426–12431

    PubMed  CAS  Google Scholar 

  • Sarac MS, Peinado JR, Leppla SH, Lindberg I (2004) Protection against anthrax toxemia by hexa-D-arginine in vitro and in vivo. Infect Immun 72:602–605

    PubMed  CAS  Google Scholar 

  • Schneerson R, Kubler-Kielb J, Liu TY, Dai ZD, Leppla SH, Yergey A, Backlund P, Shiloach J, Majadly F, Robbins JB (2003) Poly(gamma-D-glutamic acid) protein conjugates induce IgG antibodies in mice to the capsule of Bacillus anthracis: a potential addition to the anthrax vaccine. Proc Natl Acad Sci U S A 100:8945–8950

    PubMed  CAS  Google Scholar 

  • Scobie HM, Rainey GJ, Bradley KA, Young JA (2003) Human capillary morphogenesis protein 2 functions as an anthrax toxin receptor. Proc Natl Acad Sci U S A 100:5170–5174

    PubMed  CAS  Google Scholar 

  • Sellman BR, Mourez M, Collier RJ (2001a) Dominant-negative mutants of a toxin subunit: an approach to therapy of anthrax. Science 292:695–697

    PubMed  CAS  Google Scholar 

  • Sellman BR, Nassi S, Collier RJ (2001b) Point mutations in anthrax protective antigen that block translocation. J Biol Chem 276:8371–8376

    PubMed  CAS  Google Scholar 

  • Shen Y, Zhukovskaya NL, Zimmer MI, Soelaiman S, Bergson P, Wang CR, Gibbs CS, Tang WJ (2004) Selective inhibition of anthrax edema factor by adefovir, a drug for chronic hepatitis B virus infection. Proc Natl Acad Sci U S A 101:3242–3247

    PubMed  CAS  Google Scholar 

  • Shin S, Hur GH, Kim YB, Park KJ, Park YM, Lee WS (2000) Intracellular calcium antagonist protects cultured peritoneal macrophages against anthrax lethal toxin-induced cytotoxicity. Cell Biol Toxicol 16:137–144

    PubMed  CAS  Google Scholar 

  • Singh Y, Klimpel KR, Arora N, Sharma M, Leppla SH (1994) The chymotrypsin-sensitive site, FFD315, in anthrax toxin protective antigen is required for translocation of lethal factor. J Biol Chem 269:29039–29046

    PubMed  CAS  Google Scholar 

  • Smith H (2002) Discovery of the anthrax toxin: the beginning of studies of virulence determinants regulated in vivo. Int J Med Microbiol 291:411–417

    PubMed  CAS  Google Scholar 

  • Smith H, Keppie J (1954) Observations on experimental anthrax: demonstration of a specific lethal factor produced in vivo by Bacillus anthracis. Nature 173:689

    Google Scholar 

  • Smith H, Stoner HB (1967) Anthrax toxic complex. Fed Proc 26:1554–1557

    PubMed  CAS  Google Scholar 

  • Smith H, Keppie J, Stanley JL, Harris-Smith PW (1955) The chemical basis of the virulence of Bacillus anthracis IV: secondary shock as the major factor in death of guinea pigs from anthrax. Br J Exp Pathol 36:323–335

    PubMed  CAS  Google Scholar 

  • Soelaiman S, Wei BQ, Bergson P, Lee YS, Shen Y, Mrksich M, Shoichet BK, Tang WJ (2003) Structure-based inhibitor discovery against adenylyl cyclase toxins from pathogenic bacteria that cause anthrax and whooping cough. J Biol Chem 278:25990–25997

    PubMed  CAS  Google Scholar 

  • Song L, Hobaugh MR, Shustak C, Cheley S, Bayley H, Gouaux JE (1996) Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science 274:1859–1866

    PubMed  CAS  Google Scholar 

  • Sternbach G (2003) The history of anthrax. J Emerg Med 24:463–467

    PubMed  Google Scholar 

  • Sterne M (1937) Avirulent anthrax vaccine. Onderstepoort J Vet Sci Anima Ind 21:41–43

    Google Scholar 

  • Tang G, Leppla SH (1999) Proteasome activity is required for anthrax lethal toxin to kill macrophages. Infect Immun 67:3055–3060

    PubMed  CAS  Google Scholar 

  • Tonello F, Seveso M, Marin O, Mock M, Montecucco C (2002) Screening inhibitors of anthrax lethal factor. Nature 418:386

    PubMed  CAS  Google Scholar 

  • Tonello F, Ascenzi P, Montecucco C (2003) The metalloproteolytic activity of the anthrax lethal factor is substrate-inhibited. J Biol Chem 278:40075–40078

    PubMed  CAS  Google Scholar 

  • Tucker AE, Salles, II, Voth DE, Ortiz-Leduc W, Wang H, Dozmorov I, Centola M, Ballard JD (2003) Decreased glycogen synthase kinase 3-beta levels and related physiological changes in Bacillus anthracis lethal toxin-treated macrophages. Cell Microbiol 5:523–532

    PubMed  CAS  Google Scholar 

  • Turk BE, Wong TY, Schwarzenbacher R, Jarrell ET, Leppla SH, Collier RJ, Liddington RC, Cantley LC (2004) The structural basis for substrate and inhibitor selectivity of the anthrax lethal factor. Nat Struct Mol Biol 11:60–66

    PubMed  CAS  Google Scholar 

  • Turnbull PC (2002) Introduction: anthrax history, disease and ecology. Curr Top Microbiol Immunol 271:1–19

    PubMed  CAS  Google Scholar 

  • Varughese M, Teixeira AV, Liu S, Leppla SH (1999) Identification of a receptor-binding region within domain 4 of the protective antigen component of anthrax toxin. Infect Immun 67:1860–1865

    PubMed  CAS  Google Scholar 

  • Vick JA, Lincoln RE, Klein F, Mahlandt BG, Walker JS, Fish DC (1968) Neurological and physiological responses of the primate to anthrax toxin. J Infect Dis 118:85–96

    PubMed  CAS  Google Scholar 

  • Vitale G, Pellizzari R, Recchi C, Napolitani G, Mock M, Montecucco C (1998) Anthrax lethal factor cleaves the N-terminus of MAPKKs and induces tyrosine/threonine phosphorylation of MAPKs in cultured macrophages. Biochem Biophys Res Commun 248:706–711

    PubMed  CAS  Google Scholar 

  • Vitale G, Bernardi L, Napolitani G, Mock M, Montecucco C (2000) Susceptibility of mitogen-activated protein kinase kinase family members to proteolysis by anthrax lethal factor. Biochem J 352:739–745

    PubMed  CAS  Google Scholar 

  • Wang XM, Mock M, Ruysschaert JM, Cabiaux V (1996) Secondary structure of anthrax lethal toxin proteins and their interaction with large unilamellar vesicles: a fourier-transform infrared spectroscopy approach. Biochemistry 35:14939–14946

    PubMed  CAS  Google Scholar 

  • Wang XM, Wattiez R, Mock M, Falmagne P, Ruysschaert JM, Cabiaux V (1997) Structure and interaction of PA63 and EF (edema toxin) of Bacillus anthracis with lipid membrane. Biochemistry 36:14906–14913

    PubMed  CAS  Google Scholar 

  • Watters JW, Dewar K, Lehoczky J, Boyartchuk V, Dietrich WF (2001) Kif1C, a kinesin-like motor protein, mediates mouse macrophage resistance to anthrax lethal factor. Curr Biol 11:1503–1511

    PubMed  CAS  Google Scholar 

  • Webster JI, Tonelli LH, Moayeri M, Simons SS Jr, Leppla SH, Sternberg EM (2003) Anthrax lethal factor represses glucocorticoid and progesterone receptor activity. Proc Natl Acad Sci U S A 100:5706–5711

    PubMed  CAS  Google Scholar 

  • Welkos SL, Keener TJ, Gibbs PH (1986) Differences in susceptibility of inbred mice to Bacillus anthracis. Infect Immun 51:795–800

    PubMed  CAS  Google Scholar 

  • Wesche J, Elliott JL, Falnes PO, Olsnes S, Collier RJ (1998) Characterization of membrane translocation by anthrax protective antigen. Biochemistry 37:15737–15746

    PubMed  CAS  Google Scholar 

  • Wild MA, Xin H, Maruyama T, Nolan MJ, Calveley PM, Malone JD, Wallace MR, Bowdish KS (2003) Human antibodies from immunized donors are protective against anthrax toxin in vivo. Nat Biotechnol 21:1305–1306

    PubMed  CAS  Google Scholar 

  • Yan M, Collier RJ (2003) Characterization of dominant-negative forms of anthrax protective antigen. Mol Med 9:46–51

    PubMed  CAS  Google Scholar 

  • Zhao J, Milne JC, Collier RJ (1995) Effect of anthrax toxin’s lethal factor on ion channels formed by the protective antigen. J Biol Chem 270:18626–18630

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mourez .

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag

About this chapter

Cite this chapter

Mourez, M. (2004). Anthrax toxins. In: Reviews of Physiology, Biochemistry and Pharmacology. Reviews of Physiology, Biochemistry and Pharmacology, vol 152. Springer, Berlin, Heidelberg. https://doi.org/10.1007/s10254-004-0028-2

Download citation

Publish with us

Policies and ethics