Skip to main content

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 152))

Abstract

The actin cytoskeleton of mammalian cells is involved in many processes that affect the growth and colonization of bacteria, such as migration of immune cells, phagocytosis by macrophages, secretion of cytokines, maintenance of epithelial barrier functions and others. With respect to these functions, it is not surprising that many bacterial protein toxins, which are important virulence factors and causative agents of human and/or animal diseases, target the actin cytoskeleton of the host. Some toxins target actin directly, such as the C2 toxin produced by Clostridium botulinum. Moreover, bacterial toxins target the cytoskeleton indirectly by modifying actin regulators such as the low-molecular-mass guanosine triphosphate (GTP)-binding proteins of the Rho family. Remarkably, toxins affect these GTPases in a bidirectional manner. Some toxins inhibit and some activate the GTPases. Here we review the Rho-activating toxins CNF1 and CNF2 (cytotoxic necrotizing factors) from Escherichia coli, the Yersinia CNFY and the dermonecrotic toxin (DNT) from Bordetella species. We describe and compare their uptake into mammalian cells, mode of action, structure—function relationship, substrate specificity and role in diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Brest P, Mograbi B, Hofmann V, Loubat A, Rossi B, Auberger P, Hofmann P (2003) Rho GTPase is activated by cytotoxic necrotizing factor 1 in peripheral blood T lymphocytes: potential cytotoxicity for intestinal epithelial cells. Infect Immun 71:1161–1169

    Article  PubMed  CAS  Google Scholar 

  • Brockmeier SL, Register KB, Magyar T, Lax AJ, Pullinger GD, Kunkle RA (2002) Role of the dermonecrotic toxin of Bordetella bronchiseptica in the pathogenesis of respiratory disease in swine. Infect Immun 70:481–490

    Article  PubMed  CAS  Google Scholar 

  • Buetow L, Ghosh P (2003) Structural elements required for deamidation of RhoA by cytotoxic necrotizing factor 1. Biochemistry 42:12784–12791

    Article  PubMed  CAS  Google Scholar 

  • Buetow L, Flatau G, Chiu K, Boquet P, Ghosh P (2001) Structure of the Rho-activating domain of Escherichia coli cytotoxic necrotizing factor 1. Nat Struct Biol 8:584–588

    Article  PubMed  CAS  Google Scholar 

  • Burridge K, Wennerberg K (2004) Rho and Rac take center stage. Cell 116:167–179

    Article  PubMed  CAS  Google Scholar 

  • Busch C, Aktories K (2000) Microbial toxins and the glucosylation of Rho family GTPases. Curr Opin Struct Biol 10:528–535

    Article  PubMed  CAS  Google Scholar 

  • Capo C, Meconi S, Sanguedolce MV, Bardin N, Flatau G, Boquet P, Mege JL (1998) Effect of cytotoxic necrotizing factor-1 on actin cytoskeleton in human monocytes: role in the regulation of integrin-dependent phagocytosis. J Immunol 161:4301–4308

    PubMed  CAS  Google Scholar 

  • Caprioli A, Falbo V, Roda LG, Ruggeri FM, Zona C (1983) Partial purification and characterization of an Escherichia coli toxic factor that induces morphological cell alterations. Infect Immun 39:1300–1306

    PubMed  CAS  Google Scholar 

  • Chung JW, Hong SJ, Kim KJ, Goti D, Stins MF, Shin S, Dawson VL, Dawson TM, Kim KS (2003) 37 kDa laminin receptor precursor modulates cytotoxic necrotizing factor 1-mediated RhoA activation and bacterial uptake. J Biol Chem in press (M301028200)

    Google Scholar 

  • Contamin S, Galmiche A, Doye A, Flatau G, Benmerah A, Boquet P (2000) The p21 Rho-activating toxin cytotoxic necrotizing factor 1 is endocytosed by a clathrin-independent mechanism and enters the cytosol by an acidic-dependent membrane translocation step. Mol Biol Cell 11:1775–1787

    PubMed  CAS  Google Scholar 

  • Cowell JL, Hewlett EL, Manclark CR (1979) Intracellular localization of the dermonecrotic toxin of Bordetella pertussis. Infect Immun 25:896–901

    PubMed  CAS  Google Scholar 

  • de Rycke J, Guillot JF, Boivin R (1987) Cytotoxins in non-enterotoxigenic strains of Escherichia coli isolated from feces of diarrheic calves. Vet Microbiol 15:137–150

    Article  PubMed  Google Scholar 

  • de Rycke J, González EA, Blanco J, Oswald E, Blanco M, Boivin R (1990) Evidence for two types of cytotoxic necrotizing factor in human and animal clinical isolates of Escherichia coli. J Clin Microbiol 28:694–699

    PubMed  Google Scholar 

  • Denko N, Langland R, Barton M, Lieberman MA (1997) Uncoupling of S-phase and mitosis by recombinant cytotoxic necrotizing factor 2 (CNF2). Exp Cell Res 234:132–138

    Article  PubMed  CAS  Google Scholar 

  • Doye A, Mettouchi A, Bossis G, Clément R, Buisson-Touati C, Flatau G, Gagnoux L, Piechaczyk M, Boquet P, Lemichez E (2002) CNF1 exploits the ubiquitin-proteasome machinery to restrict Rho GTPase activation for bacterial host cell invasion. Cell 111:553–564

    Article  PubMed  CAS  Google Scholar 

  • Etienne-Manneville S, Hall A (2002) Rho GTPases in cell biology. Nature 420:629–635

    Article  PubMed  CAS  Google Scholar 

  • Falzano L, Fiorentini C, Donelli G, Michel E, Kocks C, Cossart P, Cabanié L, Oswald E, Boquet P (1993) Induction of phagocytic behaviour in human epithelial cells by Escherichia coli cytotoxic necrotizing factor type 1. Mol Microbiol 9:1247–1254

    Article  PubMed  CAS  Google Scholar 

  • Fiorentini C, Fabbri A, Flatau G, Donelli G, Matarrese P, Lemichez E, Falzano L, Boquet P (1997) Escherichia coli cytotoxic necrotizing factor 1 (CNF1), a toxin that activates the Rho GTPase. J Biol Chem 272:19532–19537

    Article  PubMed  CAS  Google Scholar 

  • Fiorentini C, Falzano L, Fabbri A, Stringaro A, Logozzi M, Travaglione S, Contamin S, Arancia G, Malorni W, Fais S (2001) Activation of Rho GTPases by cytotoxic necrotizing factor 1 induces macropinocytosis and scavenging activity in epithelial cells. Mol Biol Cell 12:2061–2073

    PubMed  CAS  Google Scholar 

  • Flatau G, Lemichez E, Gauthier M, Chardin P, Paris S, Fiorentini C, Boquet P (1997) Toxin-induced activation of the G protein p21 Rho by deamidation of glutamine. Nature 387:729–733

    Article  PubMed  CAS  Google Scholar 

  • Flatau G, Landraud L, Boquet P, Bruzzone M, Munro P (2000) Deamidation of RhoA glutamine 63 by the Escherichia coli CNF1 toxin requires a short sequence of the GTPase switch 2 domain. Biochem Biophys Res Commun 267:588–592

    Article  PubMed  CAS  Google Scholar 

  • Fournout S, Dozois CM, Odin M, Desautels C, Pérès S, Hérault F, Daigle F, Segafredo C, Laffitte J, Oswald E, Fairbrother JM, Oswald IP (2000) Lack of a role of cytotoxic necrotizing factor 1 toxin from Escherichia coli in bacterial pathogenicity and host cytokine response in infected germfree piglets. Infect Immun 68:839–847

    Article  PubMed  CAS  Google Scholar 

  • Galan JE, Fu Y (2000) Modulation of actin cytoskeleton by Salmonella GTPase activating protein SptP. Methods Enzymol 325:496–504

    Article  PubMed  CAS  Google Scholar 

  • Genth H, Aktories K, Just I (1999) Monoglucosylation of RhoA at Threonine-37 blocks cytosol-membrane cycling. J Biol Chem 274:29050–29056

    Article  PubMed  CAS  Google Scholar 

  • Gerhard R, Schmidt G, Hofmann F, Aktories K (1998) Activation of Rho GTPases by Escherichia coli cytotoxic necrotizing factor 1 increases intestinal permeability in Caco-2 cells. Infect Immun 66:5125–5131

    PubMed  CAS  Google Scholar 

  • Herrmann C, Ahmadian MR, Hofmann F, Just I (1998) Functional consequences of monoglucosylation of H-Ras at effector domain amino acid threonine-35. J Biol Chem 273:16134–16139

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann C, Pop M, Leemhuis J, Schirmer J, Aktories K, Schmidt G (2004) The Yersinia pseudotuberculosis cytotoxic necrotizing factor (CNFY) selectively activates RhoA. J Biol Chem 279

    Google Scholar 

  • Hofmann P, Le Negrate G, Mograbi B, Hofmann V, Brest P, Alliana-Schmid A, Flatau G, Boquet P, Rossi B (2000) Escherichia coli cytotoxic necrotizing factor-1 (CNF-1) increases the adherence to epithelia and the oxidative burst of human polymorphonuclear leukocytes but decreases bacteria phagocytosis. J Leukoc Biol 68:522–528

    Google Scholar 

  • Hopkins AM, Walsh SV, Verkade P, Boquet P, Nusrat A (2003) Constitutive activation of Rho proteins by CNF-1 influences tight junction structure and epithelial barrier function. J Cell Sci 116:725–742

    Article  PubMed  CAS  Google Scholar 

  • Horiguchi Y (2001) Escherichia coli cytotoxic necrotizing factors and Bordetella dermonecrotic toxin: the dermonecrosis-inducing toxins activating Rho small GTPases. Toxicon 39:1619–1627

    Article  PubMed  CAS  Google Scholar 

  • Horiguchi Y, Nakai T, Kume K (1989) Purification and characterization of Bordetella bronchiseptica dermonecrotic toxin. Microb Pathog 6:361–368

    Article  PubMed  CAS  Google Scholar 

  • Horiguchi Y, Okada T, Sugimoto N, Morikawa Y, Katahira J, Matsuda M (1995) Effects of Bordetella bronchiseptica dermonecrotizing toxin on bone formation in calvaria of neonatal rats. FEMS Immunol Med Microbiol 12:29–32

    Article  PubMed  CAS  Google Scholar 

  • Horiguchi Y, Inoue N, Masuda M, Kashimoto T, Katahira J, Sugimoto N, Matsuda M (1997) Bordetella bronchiseptica dermonecrotizing toxin induces reorganization of actin stress fibers through deamidation of Gln-63 of the GTP-binding protein Rho. Proc Natl Acad Sci USA 94:11623–11626

    Article  PubMed  CAS  Google Scholar 

  • Just I, Selzer J, Wilm M, Von Eichel-Streiber C, Mann M, Aktories K (1995) Glucosylation of Rho proteins by Clostridium difficile toxin B. Nature 375:500–503

    Article  PubMed  CAS  Google Scholar 

  • Just I, Hofmann F, Aktories K (2000) Molecular mechanisms of large clostridial cytotoxins. In: Just I, Aktories K (eds) Handbook of experimental pharmacology. Springer-Verlag, Berlin, Heidelberg, New York, pp 307–331

    Google Scholar 

  • Kashimoto T, Katahira J, Cornejo WR, Masuda M, Fukuoh A, Matsuzawa T, Ohnishi T, Horiguchi Y (1999) Identification of functional domains of Bordetella dermonecrotizing toxin. Infect Immun 67:3727–3732

    PubMed  CAS  Google Scholar 

  • Khan NA, Wang Y, Kim KJ, Chung JW, Wass CA, Kim KS (2002) Cytotoxic necrotizing factor-1 contributes to Escherichia coli K1 invasion of the central nervous system. J Biol Chem 277:15607–15612

    Article  PubMed  CAS  Google Scholar 

  • Kubori T, Galan JE (2003) Temporal regulation of Salmonella virulence effector function by proteasome-dependent protein degradation. Cell 115:333–342

    Article  PubMed  CAS  Google Scholar 

  • Lacerda HM, Pullinger GD, Lax AJ, Rozengurt E (1997) Cytotoxic necrotizing factor 1 from Escherichia coli and dermonecrotic toxin from Bordetella bronchiseptica induce p21rho-dependent tyrosine phosphorylation of focal adhesion kinase and paxillin in swiss 3T3 cells. J Biol Chem 272:9587–9596

    Article  PubMed  CAS  Google Scholar 

  • Lax AJ, Thomas W (2002) How bacteria could cause cancer: one step at a time. Trends Microbiol 10:293–299

    Article  PubMed  CAS  Google Scholar 

  • Lemichez E, Flatau G, Bruzzone M, Boquet P, Gauthier M (1997) Molecular localization of the Escherichia coli cytotoxic necrotizing factor CNF1 cell-binding and catalytic domains. Mol Microbiol 24:1061–1070

    Article  PubMed  CAS  Google Scholar 

  • Lerm M, Schmidt G, Goehring U-M, Schirmer J, Aktories K (1999a) Identification of the region of Rho involved in substrate recognition by Escherichia coli cytotoxic necrotizing factor 1 (CNF1). J Biol Chem 274:28999–29004

    Article  PubMed  CAS  Google Scholar 

  • Lerm M, Selzer J, Hoffmeyer A, Rapp UR, Aktories K, Schmidt G (1999b) Deamidation of Cdc42 and Rac by Escherichia coli cytotoxic necrotizing factor 1 (CNF1)—activation of c-Jun-N-terminal kinase in HeLa cells. Infect Immun 67:496–503

    PubMed  CAS  Google Scholar 

  • Lerm M, Pop M, Fritz G, Aktories K, Schmidt G (2002) Proteasomal degradation of cytotoxic necrotizing factor 1-activated Rac. Infect Immun 70:4053–4058

    Article  PubMed  CAS  Google Scholar 

  • Lockman HA, Gillespie RA, Baker BD, Shakhnovich E (2002) Yersinia pseudotuberculosis produces a cytotoxic necrotizing factor. Infect Immun 70:2708–2714

    Article  PubMed  CAS  Google Scholar 

  • Lorand L, Graham RM (2003) Transglutaminases: crosslinking enzymes with pleiotropic functions. Nat Rev Mol Cell Biol 4:140–156

    Article  PubMed  CAS  Google Scholar 

  • Magyar T, Glavits R, Pullinger GD, Lax AJ (2000) The pathological effect of the Bordetella dermonecrotic toxin in mice. Acta Vet Hung 48:397–406

    PubMed  CAS  Google Scholar 

  • Malorni W, Quaranta MG, Straface E, Falzano L, Fabbri A, Viora M, Fiorentini C (2003) The Rac-activating toxin cytotoxic necrotizing factor 1 oversees NK cell-mediated activity by regulating the actin/microtubule interplay. J Immunol 171:4195–4202

    PubMed  CAS  Google Scholar 

  • Masuda M, Betancourt L, Matsuzawa T, Kashimoto T, Takao T, Shimonishi Y, Horiguchi Y (2000) Activation of Rho through a cross-link with polyamines catalyzed by Bordetella dermonecrotizing toxin. EMBO J 19:521–530

    Article  PubMed  CAS  Google Scholar 

  • Matsuzawa T, Kashimoto T, Katahira J, Horiguchi Y (2002) Identification of a receptor-binding domain of Bordetella dermonecrotic toxin. Infect Immun 70:3427–3432

    Article  PubMed  CAS  Google Scholar 

  • Matsuzawa T, Fukui A, Kashimoto T, Nagao K, Oka K, Miyake M, Horiguchi Y (2003) Bordetella dermonecrotic toxin undergoes proteolytic processing to be translocated from a dynamin-related endosome into the cytoplasm in an acidification-independent manner. J Biol Chem M310340200

    Google Scholar 

  • Munro P, Flatau G, Doye A, Boyer L, Oregioni O, Mege JL, Landraud L, Lemichez E (2004) Activation and proteasomal degradation of Rho GTPases by CNF1 elicit a controlled inflammatory response. J Biol Chem M401580200

    Google Scholar 

  • Nakai T, Sawata A, Kume K (1985) Intracellular locations of dermonecrotic toxins in Pasteurella multocida and in Bordetella bronchispetica. Am J Vet Res 46:870–874

    PubMed  CAS  Google Scholar 

  • Oshima M, Dinchuk JE, Kargman SL, Oshima H, Hancock B, Kwong E, Trzaskos JM, Evans JF, Taketo MM (1996) Suppression of intestinal polyposis in Apc delta716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell 87:803–809

    Article  PubMed  CAS  Google Scholar 

  • Oswald E, de Rycke J (1990) A single protein of 110 kDa is associated with the multinucleating and necrotizing activity coded by the Vir plasmid of Escherichia coli. FEMS Microbiol Lett 68:279–284

    CAS  Google Scholar 

  • Oswald E, de Rycke J, Guillot JF, Boivin R (1989) Cytotoxic effect of multinucleation in HeLa cell cultures associated with the presence of Vir plasmid in Escherichia coli strains. FEMS Microbiol Lett 58:95–100

    Article  CAS  Google Scholar 

  • Oswald E, Sugai M, Labigne A, Wu HC, Fiorentini C, Boquet P, O’Brien AD (1994) Cytotoxic necrotizing factor type 2 produced by virulent Escherichia coli modifies the small GTP-binding proteins Rho involved in assembly of actin stress fibers. Proc Natl Acad Sci USA 91:3814–3818

    Article  PubMed  CAS  Google Scholar 

  • Pei S, Doye A, Boquet P (2001) Mutation of specific acidic residues of the CNF1 T domain into lysine alters cell membrane translocation of the toxin. Mol Microbiol 41:1237–1247

    Article  PubMed  CAS  Google Scholar 

  • Pop M, Aktories K, Schmidt G (2004) Isotype-specific degradation of Rac activated by the cytotoxic necrotizing factor 1 (CNF1). J Biol Chem M404346200

    Google Scholar 

  • Rippere-Lampe KE, Lang M, Ceri H, Olson M, Lockman HA, O’Brien AD (2001a) Cytotoxic necrotizing factor type 1-positive Escherichia coli causes increased inflammation and tissue damage to the prostate in a rat prostatitis model. Infect Immun 69:6515–6519

    Article  PubMed  CAS  Google Scholar 

  • Rippere-Lampe KE, O’Brien AD, Conran R, Lockman HA (2001b) Mutation of the gene encoding cytotoxic necrotizing factor type 1 (cnf1) attenuates the virulence of uropathogenic Escherichia coli. Infect Immun 69:3954–3964

    Article  PubMed  CAS  Google Scholar 

  • Schmidt G, Sehr P, Wilm M, Selzer J, Mann M, Aktories K (1997) Gln63 of Rho is deamidated by Escherichia coli cytotoxic necrotizing factor 1. Nature 387:725–729

    Article  PubMed  CAS  Google Scholar 

  • Schmidt G, Selzer J, Lerm M, Aktories K (1998) The Rho-deamidating cytotoxic-necrotizing factor CNF1 from Escherichia coli possesses transglutaminase activity—cysteine-866 and histidine-881 are essential for enzyme activity. J Biol Chem 273:13669–13674

    Article  PubMed  CAS  Google Scholar 

  • Schmidt G, Goehring U-M, Aktories K (1999a) The C-terminal part of dermonecrotic toxin (DNT) is sufficient for enzymatic activity. Naunyn-Schmiedeberg’s Arch Pharmacol 359:R60

    Article  Google Scholar 

  • Schmidt G, Goehring U-M, Schirmer J, Lerm M, Aktories K (1999b) Identification of the C-terminal part of Bordetella dermonecrotic toxin as a transglutaminase for Rho GTPases. J Biol Chem 274:31875–31881

    Article  PubMed  CAS  Google Scholar 

  • Schmidt G, Goehring U-M, Schirmer J, Uttenweiler-Joseph S, Wilm M, Lohmann M, Giese A, Schmalzing G, Aktories K (2001) Lysine and polyamines are substrates for transglutamination of Rho by the Bordetella dermonecrotic toxin. Infect Immun 69:7663–7670

    Article  PubMed  CAS  Google Scholar 

  • Sehr P, Joseph G, Genth H, Just I, Pick E, Aktories K (1998) Glucosylation and ADP-ribosylation of Rho proteins—effects on nucleotide binding, GTPase activity, and effector-coupling. Biochemistry 37:5296–5304

    Article  PubMed  CAS  Google Scholar 

  • Sekine A, Fujiwara M, Narumiya S (1989) Asparagine residue in the rho gene product is the modification site for botulinum ADP-ribosyltransferase. J Biol Chem 264:8602–8605

    PubMed  CAS  Google Scholar 

  • Shao F, Merritt PM, Bao Z, Innes RW, Dixon JE (2002) A Yersinia effector and a Pseudomonas avirulence protein define a family of cysteine proteases functioning in bacterial pathogenesis. Cell 109:575–588

    Article  PubMed  CAS  Google Scholar 

  • Stender S, Friebel A, Linder S, Rohde M, Mirold S, Hardt W-D (2000) Identification of SopE2 from Salmonella typhimurium, a conserved guanine nucleotide exchange factor for Cdc42 of the host cell. Mol Microbiol 36:1206–1221

    Article  PubMed  CAS  Google Scholar 

  • Symons M, Settleman J (2000) Rho family GTPases: more than just simple switches. Trends Cell Biol 10:415–419

    Article  PubMed  CAS  Google Scholar 

  • Takai Y, Sasaki T, Matozaki T (2001) Small GTP-binding proteins. Physiol Rev 81:153–208

    PubMed  CAS  Google Scholar 

  • Thomas W, Ascott ZK, Harmey D, Slice LW, Rozengurt E, Lax AJ (2001) Cytotoxic necrotizing factor from Escherichia coli induces RhoA-dependent expression of the cyclooxygenase-2 gene. Infect Immun 69:6839–6845

    Article  PubMed  CAS  Google Scholar 

  • Torgersen ML, Skretting G, Van Deurs B, Sandvig K (2001) Internalization of cholera toxin by different endocytic mechanisms. J Cell Sci 114:3737–3747

    PubMed  CAS  Google Scholar 

  • Van Aelst L, D’Souza-Schorey C (1997) Rho GTPases and signaling networks. Genes Dev 11:2295–2322

    Article  PubMed  Google Scholar 

  • Wang HR, Zhang Y, Ozdamar B, Ogunjimi AA, Alexandrova E, Thomsen GH, Wrana JL (2003) Regulation of cell polarity and protrusion formation by targeting RhoA for degradation. Science 302:1775–1779

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Schmidt .

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag

About this chapter

Cite this chapter

Hoffmann, C., Schmidt, G. (2004). CNF and DNT. In: Reviews of Physiology, Biochemistry and Pharmacology. Reviews of Physiology, Biochemistry and Pharmacology, vol 152. Springer, Berlin, Heidelberg. https://doi.org/10.1007/s10254-004-0026-4

Download citation

Publish with us

Policies and ethics