Skip to main content

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 147))

Abstract

Peroxisome biogenesis conceptually consists of the (a) formation of the peroxisomal membrane, (b) import of proteins into the peroxisomal matrix and (c) proliferation of the organelles. Combined genetic and biochemical approaches led to the identification of 25 PEX genes-encoding proteins required for the biogenesis of peroxisomes, so-called peroxins. Peroxisomal matrix and membrane proteins are synthesized on free ribosomes in the cytosol and posttranslationally imported into the organelle in an unknown fashion. The protein import into the peroxisomal matrix and the targeting and insertion of peroxisomal membrane proteins is performed by distinct machineries. At least three peroxins have been shown to be involved in the topogenesis of peroxisomal membrane proteins. Elaborate peroxin complexes form the machinery which in a concerted action of the components transports folded, even oligomeric matrix proteins across the peroxisomal membrane. The past decade has significantly improved our knowledge of the involvement of certain peroxins in the distinct steps of the import process, like cargo recognition, docking of cargo-receptor complexes to the peroxisomal membrane, translocation, and receptor recycling. This review summarizes our knowledge of the functional role the known peroxins play in the biogenesis and maintenance of peroxisomes. Ideas on the involvement of preperoxisomal structures in the biogenesis of the peroxisomal membrane are highlighted and special attention is paid to the concept of cargo protein aggregation as a presupposition for peroxisomal matrix protein import.

Electronic Publication

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achleitner G, Gaigg B, Krasser A, Kainersdorfer E, Kohlwein SD, Perktold A, Zellnig G, Daum G (1999) Association between the endoplasmic reticulum and mitochondria of yeast facilitates interorganelle transport of phospholipids through membrane contact. Eur J Biochem 264:545–553

    PubMed  CAS  Google Scholar 

  • Agne B, Meindl NM, Niederhoff K, Einwächter H, Rehling P, Sickmann A, Meyer HE, Girzalsky W, Kunau WH (2003) Pex8p: an intraperoxisomal organizer of the peroxisomal import machinery. Mol Cell (in press)

    Google Scholar 

  • Albertini M, Girzalsky W, Veenhuis M, Kunau WH (2001) Pex12p of Saccharomyces cerevisiae is a component of a multiprotein complex essential for peroxisomal matrix protein import. Eur J Cell Biol 80:257–270

    PubMed  CAS  Google Scholar 

  • Albertini M, Rehling P, Erdmann R, Girzalsky W, Kiel JA, Veenhuis M, Kunau WH (1997) Pex14p, a peroxisomal membrane protein binding both receptors of the two PTS-dependent import pathways. Cell 89:83–92

    PubMed  CAS  Google Scholar 

  • Angermüller S, Leupold C, Zaar K, Fahimi HD (1986) Electron microscopic cytochemical localization of alpha-hydroxyacid oxidase in rat kidney cortex. Heterogeneous staining of peroxisomes. Histochemistry 85:411–418

    PubMed  Google Scholar 

  • Ardail D, Gasnier F, Lerme F, Simonot C, Louisot P, Gateau-Roesch O (1993) Involvement of mitochondrial contact sites in the subcellular compartmentalization of phospholipid biosynthetic enzymes. J Biol Chem 268:25985–28992

    PubMed  CAS  Google Scholar 

  • Baerends RJ, Faber KN, Kram AM, Kiel JA, Klei IJ van der, Veenhuis M (2000) A stretch of positively charged amino acids at the N terminus of Hansenula polymorpha Pex3p is involved in incorporation of the protein into the peroxisomal membrane. J Biol Chem 275:9986–9995

    PubMed  CAS  Google Scholar 

  • Baerends RJ, Rasmussen SW, Hilbrands RE, Heide M van der, Faber KN, Reuvekamp PT, Kiel JA, Cregg JM, Klei IJ van der, Veenhuis M (1996) The Hansenula polymorpha PER9 gene encodes a peroxisomal membrane protein essential for peroxisome assembly and integrity. J Biol Chem 271:8887–8894

    PubMed  CAS  Google Scholar 

  • Baker A (1996) In vitro systems in the study of peroxisomal protein import. Experientia 52:1055–1062

    PubMed  CAS  Google Scholar 

  • Baker A, Charlton W, Johnson B, Lopez-Huertas E, Oh J, Sparkes I, Thomas J (2000) Biochemical and molecular approaches to understanding protein import into peroxisomes. Biochem Soc Trans 28:499–504

    PubMed  CAS  Google Scholar 

  • Barnett P, Bottger G, Klein AT, Tabak HF, Distel B (2000) The peroxisomal membrane protein Pex13p shows a novel mode of SH3 interaction. Embo J 19:6382–6391

    PubMed  CAS  Google Scholar 

  • Baumgart E, Völkl A, Hashimoto T, Fahimi HD (1989) Biogenesis of Peroxisomes: Immunocytochemical investigation of peroxisomal membrane proteins in proliferating rat liver peroxisomes and in catalasenegative membrane loops. J Cell Biol 108:2221–2231

    PubMed  CAS  Google Scholar 

  • Bellion E, Goodman JM (1987) Proton ionophores prevent assembly of a peroxisomal protein. Cell 48:165–173

    PubMed  CAS  Google Scholar 

  • Biardi L, Sreedhar A, Zokaei A, Vartak NB, Bozeat RL, Shackelford JE, Keller GA, Krisans SK (1994) Mevalonate kinase is predominantly localized in peroxisomes and is defective in patients with peroxisome deficiency disorders. J Biol Chem 269:1197–1205

    PubMed  CAS  Google Scholar 

  • Birschmann I, Stroobants AK, Berg M van den, Schöfer A, Rosenkranz K, Kunau WH, Tabak HF (2003) Pex15p of Saccharomyces cerevisiae provides the molecular basis for recruitment of the AAA peroxin Pex6p to peroxisomal membranes. Mole Cell Biol (in press)

    Google Scholar 

  • Bottger G, Barnett P, Klein AT, Kragt A, Tabak HF, Distel B (2000) Saccharomyces cerevisiae PTS1 receptor Pex5p interacts with the SH3 domain of the peroxisomal membrane protein Pex13p in an unconventionalSaccharomyces cerevisiae PTS1 receptor Pex5p interacts with the SH3 domain of the peroxisomal membrane protein Pex13p in an unconventional, non-PXXP-related manner. Mol Biol Cell 11:3963–3976

    PubMed  CAS  Google Scholar 

  • Braverman N, Dodt G, Gould SJ, Valle D (1998) An isoform of pex5p, the human PTS1 receptor, is required for the import of PTS2 proteins into peroxisomes. Hum Mol Genet 7:1195–1205

    PubMed  CAS  Google Scholar 

  • Brickner DG, Harada JJ, Olsen LJ (1997) Protein transport into higher plant peroxisomes. In vitro import assay provides evidence for receptor involvement. Plant Physiol 113:1213–1221

    PubMed  CAS  Google Scholar 

  • Brocard C, Kragler F, Simon MM, Schuster T, Hartig A (1994) The tetratricopeptide repeat-domain of the PAS10 protein of Saccharomyces cerevisiae is essential for binding the peroxisomal targeting signal-SKL. Biochem Biophys Res Commun 204:1016–1022

    PubMed  CAS  Google Scholar 

  • Brocard C, Lametschwandtner G, Koudelka R, Hartig A (1997) Pex14p is a member of the protein linkage map of Pex5p. Embo J 16:5491–5500

    PubMed  CAS  Google Scholar 

  • Brosius U, Dehmel T, Gartner J (2002) Two different targeting signals direct human peroxisomal membrane protein 22 to peroxisomes. J Biol Chem 277:774–784

    PubMed  CAS  Google Scholar 

  • Brown TW, Titorenko VI, Rachubinski RA (2000) Mutants of the Yarrowia lipolytica PEX23 gene encoding an integral peroxisomal membrane peroxin mislocalize matrix proteins and accumulate vesicles containing peroxisomal matrix and membrane proteins. Mol Biol Cell 11:141–152

    PubMed  CAS  Google Scholar 

  • Chang CC, Gould SJ (1998) Phenotype-genotype relationships in complementation group 3 of the peroxisome-biogenesis disorders. Am J Hum Genet 63:1294–1306

    PubMed  CAS  Google Scholar 

  • Chang CC, Lee WH, Moser H, Valle D, Gould SJ (1997) Isolation of the human PEX12 gene, mutated in group 3 of the peroxisome biogenesis disorders. Nat Genet 15:385–388

    PubMed  CAS  Google Scholar 

  • Chang CC, Warren DS, Sacksteder KA, Gould SJ (1999) PEX12 interacts with PEX5 and PEX10 and acts downstream of receptor docking in peroxisomal matrix protein import. J Cell Biol 147:761–774

    PubMed  CAS  Google Scholar 

  • Charlton W, Lopez-Huertas E (2002) PEX Genes in plants and other organisms. In: Graham ABaIA (ed) Plant peroxisomes: biochemistry, cell biology, and biotechnological applications. Kluwer Academic Publishers, New York, pp chapter 12

    Google Scholar 

  • Collins CS, Kalish JE, Morrell JC, McCaffery JM, Gould SJ (2000) The peroxisome biogenesis factors Pex4p, Pex22p, Pex1p, and Pex6p act in the terminal steps of peroxisomal matrix protein import. Mol Cell Biol 20:7516–7526

    PubMed  CAS  Google Scholar 

  • Corpas FJ, Trelease RN (1997) The plant 73 kDa peroxisomal membrane protein (PMP73) is immunorelated to molecular chaperones. Eur J Cell Biol 73:49–57

    PubMed  CAS  Google Scholar 

  • Crane DI, Kalish JE, Gould SJ (1994) The Pichia pastoris PAS4 gene encodes a ubiquitin-conjugating enzyme required for peroxisome assembly. J Biol Chem 269:21835–21844

    PubMed  CAS  Google Scholar 

  • Crookes WJ, Olsen LJ (1999) Peroxin puzzles and folded freight: peroxisomal protein import in review. Naturwissenschaften 86:51–61

    PubMed  CAS  Google Scholar 

  • Dammai V, Subramani S (2001) The human peroxisomal targeting signal receptor, Pex5p, is translocated into the peroxisomal matrix and recycled to the cytosol. Cell 105:187–196

    PubMed  CAS  Google Scholar 

  • Diestelköter P, Just WW (1993) In vitro insertion of the 22-kD peroxisomal membrane protein into isolated rat liver peroxisomes. J Cell Biol 123:1717–1725

    Google Scholar 

  • Distel B, Erdmann R, Gould SJ, Blobel G, Crane DI, Cregg JM, Dodt G, Fujiki Y, Goodman JM, Just WW, Kiel JA, Kunau WH, Lazarow PB, Mannaerts GP, Moser HW, Osumi T, Rachubinski RA, Roscher A, Subramani S, Tabak HF, Tsukamoto T, Valle D, KleiI van der, Veldhoven PPvan, Veenhuis M (1996) A unified nomenclature for peroxisome biogenesis factors. J Cell Biol 135:1–3

    PubMed  CAS  Google Scholar 

  • Dodt G, Braverman N, Wong C, Moser A, Moser HW, Watkins P, Valle D, Gould SJ (1995) Mutations in the PTS1 receptor gene, PXR1, define complementation group 2 of the peroxisome biogenesis disorders. Nat Genet 9:115–125

    PubMed  CAS  Google Scholar 

  • Dodt G, Gould SJ (1996) Multiple PEX genes are required for proper subcellular distribution and stability of Pex5p, the PTS1 receptor: evidence that PTS1 protein import is mediated by a cycling receptor. J Cell Biol 135:1763–1774

    PubMed  CAS  Google Scholar 

  • Dodt G, Warren D, Becker E, Rehling P, Gould SJ (2001) Domain mapping of human PEX5 reveals functional and structural similarities to Saccharomyces cerevisiae Pex18p and Pex21p. J Biol Chem 276:41769–41781

    PubMed  CAS  Google Scholar 

  • Duve C de (1996) The peroxisome in retrospect. Ann NY Acad Sci 804:1–10

    PubMed  Google Scholar 

  • Duve C de, Baudhuin P (1966) Peroxisomes (microbodies and related particles). Physiol Rev 46:323–357

    PubMed  Google Scholar 

  • Dyer JM, McNew JA, Goodman JM (1996) The sorting sequence of the peroxisomal integral membrane protein PMP47 is contained within a short hydrophilic loop. J Cell Biol 133:269–280

    PubMed  CAS  Google Scholar 

  • Einwachter H, Sowinski S, Kunau WH, Schliebs W (2001) Yarrowia lipolytica Pex20p, Saccharomyces cerevisiae Pex18p/Pex21p and mammalian Pex5pL fulfil a common function in the early steps of the peroxisomal PTS2 import pathway. EMBO Rep 2:1035–1039

    PubMed  CAS  Google Scholar 

  • Eitzen GA, Szilard RK, Rachubinski RA (1997) Enlarged peroxisomes are present in oleic acid-grown Yarrowia lipolytica overexpressing the PEX16 gene encoding an intraperoxisomal peripheral membrane peroxin. J Cell Biol 137:1265–1278

    PubMed  CAS  Google Scholar 

  • Elgersma Y, Elgersma-Hooisma M, Wenzel T, McCaffery JM, Farquhar MG, Subramani S (1998) A mobile PTS2 receptor for peroxisomal protein import in Pichia pastoris. J Cell Biol 140:807–820

    PubMed  CAS  Google Scholar 

  • Elgersma Y, Kwast L, Klein A, Voorn-Brouwer T, Berg M van den, Metzig B, America T, Tabak HF, Distel B (1996) The SH3 domain of the Saccharomyces cerevisiae peroxisomal membrane protein Pex13p functions as a docking site for Pex5p, a mobile receptor for the import PTS1-containing proteins. J Cell Biol 135:97–109

    PubMed  CAS  Google Scholar 

  • Elgersma Y, Kwast L, Berg M van den, Snyder WB, Distel B, Subramani S, Tabak HF (1997) Overexpression of Pex15p, a phosphorylated peroxisomal integral membrane protein required for peroxisome assembly in S.cerevisiae, causes proliferation of the endoplasmic reticulum membrane. Embo J 16:7326–7341

    PubMed  CAS  Google Scholar 

  • Elgersma Y, Tabak HF (1996) Proteins involved in peroxisome biogenesis and functioning. Biochim Biophys Acta 1286:269–283

    PubMed  CAS  Google Scholar 

  • Elgersma Y, Roermund CWvan, Wanders RJ, Tabak HF (1995) Peroxisomal and mitochondrial carnitine acetyltransferases of Saccharomyces cerevisiae are encoded by a single gene. Embo J 14:3472–3479

    PubMed  CAS  Google Scholar 

  • Erdmann R, Blobel G (1995) Giant peroxisomes in oleic acid-induced Saccharomyces cerevisiae lacking the peroxisomal membrane protein Pmp27p. J Cell Biol 128:509–523

    PubMed  CAS  Google Scholar 

  • Erdmann R, Blobel G (1996) Identification of Pex13p a peroxisomal membrane receptor for the PTS1 recognition factor. J Cell Biol 135:111–121

    PubMed  CAS  Google Scholar 

  • Erdmann R, Veenhuis M, Kunau W-H (1997) Peroxisomes: organelles at the crossroads. Trends Cell Biol 7:400–407

    CAS  Google Scholar 

  • Erdmann R, Veenhuis M, Mertens D, Kunau WH (1989) Isolation of peroxisome-deficient mutants of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 86:5419–5423

    PubMed  CAS  Google Scholar 

  • Erdmann R, Wiebel FF, Flessau A, Rytka J, Beyer A, Frohlich KU, Kunau WH (1991) PAS1, a yeast gene required for peroxisome biogenesis, encodes a member of a novel family of putative ATPases. Cell 64:499–510

    PubMed  CAS  Google Scholar 

  • Faber KN, Heyman JA, Subramani S (1998) Two AAA family peroxins, PpPex1p and PpPex6p, interact with each other in an ATP-dependent manner and are associated with different subcellular membranous structures distinct from peroxisomes. Mol Cell Biol 18:936–943

    PubMed  CAS  Google Scholar 

  • Faber KN, van Dijk R, Keizer-Gunnink I, Koek A, van der Klei IJ, Veenhuis M (2002) Import of assembled PTS1 proteins into peroxisomes of the yeast Hansenula polymorpha: yes and no! Biochim Biophys Acta 1591:157–162

    PubMed  CAS  Google Scholar 

  • Flynn CR, Mullen RT, Trelease RN (1998) Mutational analyses of a type 2 peroxisomal targeting signal that is capable of directing oligomeric protein import into tobacco BY-2 glyoxysomes. Plant J 16:709–720

    PubMed  CAS  Google Scholar 

  • Fransen M, Brees C, Baumgart E, Vanhooren JC, Baes M, Mannaerts GP, Van Veldhoven PP (1995) Identification and characterization of the putative human peroxisomal C-terminal targeting signal import receptor. J Biol Chem 270:7731–7736

    PubMed  CAS  Google Scholar 

  • Fransen M, Wylin T, Brees C, Mannaerts GP, Van Veldhoven PP (2001) Human Pex19p binds peroxisomal integral membrane proteins at regions distinct from their sorting sequences. Mol Cell Biol 21:4413–4424.

    PubMed  CAS  Google Scholar 

  • S.E. Frederick SE, Newcomb EH (1969) Cytochemical localization of catalase in leaf microbodies (peroxisomes). J Cell Biol 43:343–353

    PubMed  CAS  Google Scholar 

  • Fujiki Y (2000) Peroxisome biogenesis and peroxisome biogenesis disorders. FEBS Lett 476:42–46

    PubMed  CAS  Google Scholar 

  • Fujiki Y, Rachubinski RA, Lazarow PB (1984) Synthesis of a major integral membrane polypeptide of rat liver peroxisomes on free polysomes. Proc Natl Acad Sci USA 81:7127–7131

    PubMed  CAS  Google Scholar 

  • Gatto GJJr, Geisbrecht BV, Gould SJ, Berg JM (2000a) Peroxisomal targeting signal-1 recognition by the TPR domains of human PEX5. Nat Struct Biol 7:1091–1095

    PubMed  CAS  Google Scholar 

  • Gatto GJJr, Geisbrecht BV, Gould SJ, Berg JM (2000b) A proposed model for the PEX5-peroxisomal targeting signal-1 recognition complex. Proteins 38:241–246

    PubMed  CAS  Google Scholar 

  • Ghaedi K, Honsho M, Shimozawa N, Suzuki Y, Kondo N, Fujiki Y (2000a) PEX3 is the causal gene responsible for peroxisome membrane assembly-defective Zellweger syndrome of complementation group G. Am J Hum Genet 67:976–981

    PubMed  CAS  Google Scholar 

  • Ghaedi K, Tamura S, Okumoto K, Matsuzono Y, Fujiki Y (2000b) The peroxin Pex3p initiates membrane assembly in peroxisome biogenesis. Mol Biol Cell 11:2085–2102

    PubMed  CAS  Google Scholar 

  • Ghys K, Fransen M, Mannaerts GP, Van Veldhoven PP (2002) Functional studies on human Pex7p: subcellular localization and interaction with proteins containing a peroxisome-targeting signal type 2 and other peroxins. Biochem J 365:41–50

    PubMed  CAS  Google Scholar 

  • Girzalsky W, Rehling P, Stein K, Kipper J, Blank L, Kunau WH, Erdmann R (1999) Involvement of Pex13p in Pex14p localization and peroxisomal targeting signal 2-dependent protein import into peroxisomes. J Cell Biol 144:1151–1162

    PubMed  CAS  Google Scholar 

  • Glover JR, Andrews DW, Rachubinski RA (1994a) Saccharomyces cerevisiae peroxisomal thiolase is imported as a dimer. Proc Natl Acad Sci U S A 91:10541–10545

    PubMed  CAS  Google Scholar 

  • Glover JR, Andrews DW, Subramani S, Rachubinski RA (1994b) Mutagenesis of the amino targeting signal of Saccharomyces cerevisiae 3-ketoacyl-CoA thiolase reveals conserved amino acids required for import into peroxisomes in vivo. J Biol Chem 269:7558–7563

    PubMed  CAS  Google Scholar 

  • Goebl M, Yanagida M (1991) The TPR snap helix: a novel protein repeat motif from mitosis to transcription. Trends Biochem Sci 16:173–177

    PubMed  CAS  Google Scholar 

  • Goldfischer S, Moore CL, Johnson AB, Spiro AJ, Valsamis MP, Wisniewski HK, Ritch RH, Norton WT, Rapin I, Gartner LM (1973) Peroxisomal and mitochondrial defects in the cerebro-hepato-renal syndrome. Science 182:62–64

    PubMed  CAS  Google Scholar 

  • Götte K, Girzalsky W, Linkert M, Baumgart E, Kammerer S, Kunau WH, Erdmann R (1998) Pex19p, a farnesylated protein essential for peroxisome biogenesis. Mol Cell Biol 18:616–628

    PubMed  Google Scholar 

  • Gould SJ, Collins CS (2002) Opinion: peroxisomal-protein import: is it really that complex? Nat Rev Mol Cell Biol 3:382–389

    PubMed  CAS  Google Scholar 

  • Gould SJ, Kalish JE, Morrell JC, Bjorkman J, Urquhart AJ, Crane DI (1996) Pex13p is an SH3 protein of the peroxisome membrane and a docking factor for the predominantly cytoplasmic PTs1 receptor. J Cell Biol 135:85–95

    PubMed  CAS  Google Scholar 

  • Gould SJ, Keller GA, Hosken N, Wilkinson J, Subramani S (1989) A conserved tripeptide sorts proteins to peroxisomes. J Cell Biol 108:1657–1664

    PubMed  CAS  Google Scholar 

  • Gould SJ, Valle D (2000) Peroxisome biogenesis disorders: genetics and cell biology. Trends Genet 16:340–345

    PubMed  CAS  Google Scholar 

  • Gouveia AM, Reguenga C, Oliveira ME, Sa-Miranda C, Azevedo JE (2000) Characterization of peroxisomal Pex5p from rat liver. Pex5p in the Pex5p-Pex14p membrane complex is a transmembrane protein. J Biol Chem 275:32444–32451

    PubMed  CAS  Google Scholar 

  • Harper CC, South ST, McCaffery JM, Gould SJ (2002) Peroxisomal membrane protein import does not require Pex17p. J Biol Chem 277:16498–16504

    PubMed  CAS  Google Scholar 

  • Hashiguchi N, Kojidani T, Imanaka T, Haraguchi T, Hiraoka Y, Baumgart E, Yokota S, Tsukamoto T, Osumi T (2002) Peroxisomes are formed from complex membrane structures in PEX6-deficient CHO cells upon genetic complementation. Mol Biol Cell 13:711–722

    PubMed  CAS  Google Scholar 

  • Häusler T, Stierhof YD, Wirt E, Clayton C (1996) Import of a DHFR hybrid protein into glycosomes in vivo is not inhibited by the folate-analogue aminopterin. J Cell Biol 132:311–324

    PubMed  Google Scholar 

  • Hazra PP, Suriapranata I, Snyde WB, Subramani S (2002) Peroxisome remnants in pex3delta cells and the requirement of Pex3p for interactions between the peroxisomal docking and translocation subcomplexes. Traffic 3:560–574

    PubMed  CAS  Google Scholar 

  • Heinemann P, Just WW (1992) Peroxisomal protein import. In vivo evidence for a novel translocation competent compartment. FEBS Lett 300:179–182

    PubMed  CAS  Google Scholar 

  • Hettema EH, Distel B, Tabak HF (1999) Import of proteins into peroxisomes. Biochim Biophys Acta 1451:17–34

    PubMed  CAS  Google Scholar 

  • Hettema EH, Girzalsky W, Berg Mvan den, Erdmann R, Distel B (2000) Saccharomyces cerevisiae Pex3p and Pex19p are required for proper localization and stability of peroxisomal membrane proteins. Embo J 19:223–233

    PubMed  CAS  Google Scholar 

  • Hettema EH, Ruigrok CC, Koerkamp MG, Berg Mvan den, Tabak HF, Distel B, Braakman I (1998) The cytosolic DnaJ-like protein djp1p is involved specifically in peroxisomal protein import. J Cell Biol 142:421–434

    PubMed  CAS  Google Scholar 

  • Heupel R, Heldt HW (1994) Protein organization in the matrix of leaf peroxisomes. A multienzyme complex involved in photorespiratory metabolism. Eur J Biochem 220:165–172

    PubMed  CAS  Google Scholar 

  • Hoepfner D, Berg Mvan den, Philippsen P, Tabak HF, Hettema EH (2001) A role for Vps1p, actin, and the Myo2p motor in peroxisome abundance and inheritance in Saccharomyces cerevisiae. J Cell Biol 155:979–990

    PubMed  CAS  Google Scholar 

  • Höhfeld J, Veenhuis M, Kunau WH (1991) PAS3, a Saccharomyces cerevisiae gene encoding a peroxisomal integral membrane protein essential for peroxisome biogenesis. J Cell Biol 114:1167–1178

    PubMed  Google Scholar 

  • Holroyd C, Erdmann R (2001) Protein translocation machineries of peroxisomes. FEBS Lett 501:6–10

    PubMed  CAS  Google Scholar 

  • Honsho M, Fujiki Y (2001) Topogenesis of peroxisomal membrane protein requires a short, positively charged intervening-loop sequence and flanking hydrophobic segments. study using human membrane protein PMP34. J Biol Chem 276:9375–9382

    PubMed  CAS  Google Scholar 

  • Honsho M, Hiroshige T, Fujiki Y (2002) The membrane biogenesis peroxin Pex16p: Topogenesis and functional roles in peroxisomal membrane assembly. J Biol Chem

    Google Scholar 

  • Honsho M, Tamura S, Shimozawa N, Suzuki Y, Kondo N, Fujiki Y (1998) Mutation in PEX16 is causal in the peroxisome-deficient Zellweger syndrome of complementation group D. Am J Hum Genet 63:1622–1630

    PubMed  CAS  Google Scholar 

  • Huang K, Lazarow PB (1996) Targeting of green fluorescent protein to peroxisomes and peroxisome membranes in S.cerevisiae. Mol Biol Cell 7:494a

    Google Scholar 

  • Huang Y, Ito R, Miura S, Hashimoto T, Ito M (2000) A missense mutation in the RING finger motif of PEX2 protein disturbs the import of peroxisome targeting signal 1 (PTS1)-containing protein but not the PTS2-containing protein. Biochem Biophys Res Commun 270:717–721

    PubMed  CAS  Google Scholar 

  • Huhse B, Rehling P, Albertini M, Blank L, Meller K, Kunau WH (1998) Pex17p of Saccharomyces cerevisiae is a novel peroxin and component of the peroxisomal protein translocation machinery. J Cell Biol 140:49–60

    PubMed  CAS  Google Scholar 

  • Imanaka T, Small GM, Lazarow PB (1987) Translocation of acyl-CoA oxidase into peroxisomes requires ATP hydrolysis but not a membrane potential. J Cell Biol 105105:2915–2922

    PubMed  CAS  Google Scholar 

  • Imanaka T, Takano T, Osumi T, Hashimoto T (1996) Sorting of the 70-kDa peroxisomal membrane protein into rat liver peroxisomes in vitro. Ann N Y Acad Sci 804:663–665

    PubMed  CAS  Google Scholar 

  • Jardim A, Liu W, Zheleznova E, Ullman B (2000) Peroxisomal targeting signal-1 receptor protein PEX5 from Leishmania donovani. Molecular, biochemical, and immunocytochemical characterization. J Biol Chem 275:13637–13644

    PubMed  CAS  Google Scholar 

  • Jedd G, Chua NH (2000) A new self-assembled peroxisomal vesicle required for efficient resealing of the plasma membrane. Nat Cell Biol 2:226–231

    PubMed  CAS  Google Scholar 

  • Joazeiro CA, Weissman AM (2000) RING finger proteins: mediators of ubiquitin ligase activity. Cell 102:549–552

    PubMed  CAS  Google Scholar 

  • Johnson TL, Olsen LJ (2001) Building new models for peroxisome biogenesis. Plant Physiol 127:731–739

    PubMed  CAS  Google Scholar 

  • Jones JM, Morrell JC, Gould SJ (2001) Multiple distinct targeting signals in integral peroxisomal membrane proteins. J Cell Biol 153:1141–1150

    PubMed  CAS  Google Scholar 

  • Kalish JE, Theda C, Morrell JC, Berg JM, Gould SJ (1995) Formation of the peroxisome lumen is abolished by loss of Pichia pastoris Pas7p, a zinc-binding integral membrane protein of the peroxisome. Mol Cell Biol 15:6406–6419

    PubMed  CAS  Google Scholar 

  • Kammerer S, Arnold N, Gutensohn W, Mewes HW, Kunau WH, Hofler G, Roscher AA, Braun A (1997) Genomic organization and molecular characterization of a gene encoding HsPXF, a human peroxisomal farnesylated protein. Genomics 45:200–210

    PubMed  CAS  Google Scholar 

  • Kammerer S, Holzinger A, Welsch U, Roscher AA (1998) Cloning and characterization of the gene encoding the human peroxisomal assembly protein Pex3p. FEBS Lett 429:53–60

    PubMed  CAS  Google Scholar 

  • Kiel JA, Hilbrands RE, Klei IJvan der, Rasmussen SW, Salomons FA, Heide Mvan der, Faber KN, Cregg JM, Veenhuis M (1999) Hansenula polymorpha Pex1p and Pex6p are peroxisome-associated AAA proteins that functionally and physically interact. Yeast 15:1059–1078

    PubMed  CAS  Google Scholar 

  • Kim J, Klionsky DJ (2000) Autophagy, cytoplasm-to-vacuole targeting pathway, and pexophagy in yeast and mammalian cells. Annu Rev Biochem 69:303–342

    PubMed  CAS  Google Scholar 

  • Klei IJvan der, Hilbrands RE, Kiel JA, Rasmussen SW, Cregg JM, Veenhuis M (1998) The ubiquitin-conjugating enzyme Pex4p of Hansenula polymorpha is required for efficient functioning of the PTS1 import machinery. Embo J 17:3608–3618

    PubMed  Google Scholar 

  • Klei IJvan der, Hilbrands RE, Swaving GJ, Waterham HR, Vrieling EG, Titorenko VI, Cregg JM, Harder W, Veenhuis M (1995) The Hansenula polymorpha PER3 gene is essential for the import of PTS1 proteins into the peroxisomal matrix. J Biol Chem 270:17229–17236

    PubMed  Google Scholar 

  • Klein AT, Barnett P, Bottger G, Konings D, Tabak HF, Distel B (2001) Recognition of peroxisomal targeting signal type 1 by the import receptor Pex5p. J Biol Chem 276:15034–15041

    PubMed  CAS  Google Scholar 

  • Klein AT, Berg Mvan den, Bottger G, Tabak HF, Distel B (2002) Saccharomyces cerevisiae acyl-CoA oxidase follows a novel, non-PTS1, import pathway into peroxisomes that is dependent on Pex5p. J Biol Chem 277:25011–25019

    PubMed  CAS  Google Scholar 

  • Koller A, Snyder WB, Faber KN, Wenzel TJ, Rangell L, Keller GA, Subramani S (1999a) Pex22p of Pichia pastoris, essential for peroxisomal matrix protein import, anchors the ubiquitin-conjugating enzyme, Pex4p, on the peroxisomal membrane. J Cell Biol 146:99–112

    PubMed  CAS  Google Scholar 

  • Koller A, Spong AP, Luers GH, Subramani S (1999b) Analysis of the peroxisomal acyl-CoA oxidase gene product from Pichia pastoris and determination of its targeting signal. Yeast 15:1035–1044

    PubMed  CAS  Google Scholar 

  • Komori M, Rasmussen SW, Kiel JA, Baerends RJ, Cregg JM, Klei IJvan der, Veenhuis M (1997) The Hansenula polymorpha PEX14 gene encodes a novel peroxisomal membrane protein essential for peroxisome biogenesis. Embo J 16:44–53

    PubMed  CAS  Google Scholar 

  • Krisans SK (1992) The role of peroxisomes in cholesterol metabolism. Am J Respir Cell Mol Biol 7:358–364

    PubMed  CAS  Google Scholar 

  • Krisans SK, Ericsson J, Edwards PA, Keller GA (1994) Farnesyl-diphosphate synthase is localized in peroxisomes. J Biol Chem 269:14165–14169

    PubMed  CAS  Google Scholar 

  • Kryvi H, Kvannes J, Flatmark T (1990) Freeze-fracture study of rat liver peroxisomes: evidence for an induction of intramembrane particles by agents stimulating peroxisomal proliferation. Eur J Cell Biol 53:227–233

    PubMed  CAS  Google Scholar 

  • Kunau WH (1998) Peroxisome biogenesis: from yeast to man. Curr Opin Microbiol 1:232–237

    PubMed  CAS  Google Scholar 

  • Kunau WH, Erdmann R (1998) Peroxisome biogenesis: back to the endoplasmic reticulum? Curr Biol 8:299–302

    Google Scholar 

  • Lambkin GR, Rachubinski RA (2001) Yarrowia lipolytica cells mutant for the peroxisomal peroxin Pex19p contain structures resembling wild-type peroxisomes. Mol Biol Cell 12:3353–3364

    PubMed  CAS  Google Scholar 

  • Lametschwandtner G, Brocard C, Fransen M, VanVeldhoven P, Berger J, Hartig A (1998) The difference in recognition of terminal tripeptides as peroxisomal targeting signal 1 between yeast and human is due to different affinities of their receptor Pex5p to the cognate signal and to residues adjacent to it. J Biol Chem 273:33635–33643

    PubMed  CAS  Google Scholar 

  • Lazarow PB, Fujiki Y (1985) Biogenesis of peroxisomes. Annu Rev Cell Biol 1:489–530

    PubMed  CAS  Google Scholar 

  • Lee MS, Mullen RT, Trelease RN (1997) Oilseed isocitrate lyases lacking their essential type 1 peroxisomal targeting signal are piggybacked to glyoxysomes. Plant Cell 9:185–197

    PubMed  CAS  Google Scholar 

  • Li X, Gould SJ (2002) PEX11 promotes peroxisome division independently of peroxisome metabolism. J Cell Biol 156:643–651

    PubMed  CAS  Google Scholar 

  • Lin Y, Sun L, Nguyen LV, Rachubinski RA, Goodman HM (1999) The Pex16p homolog SSE1 and storage organelle formation in Arabidopsis seeds. Science 284:328–330

    PubMed  CAS  Google Scholar 

  • Liu H, Tan X, Russell KA, Veenhuis M, Cregg JM (1995) PER3, a gene required for peroxisome biogenesis in Pichia pastoris, encodes a peroxisomal membrane protein involved in protein import. J Biol Chem 270:10940–10951

    PubMed  CAS  Google Scholar 

  • Lüers GH, Hashimoto T, Fahimi HD, Volkl A (1993) Biogenesis of peroxisomes: isolation and characterization of two distinct peroxisomal populations from normal and regenerating rat liver. J Cell Biol 121:1271–1280

    PubMed  Google Scholar 

  • Makita T (1995) Molecular organization of hepatocyte peroxisomes. Int Rev Cytol 160:303–352

    PubMed  CAS  Google Scholar 

  • Mannaerts GP, VanVeldhoven P (1993) Metabolic role of mammalian peroxisomes. In: Gibson G, Lake B (eds) Peroxisomes: biology and importance in toxicology and medicine. Taylor & Francis, London, pp 19–62

    Google Scholar 

  • Marshall ES, Raichlen JS, Kim SM, Intenzo CM, Sawyer DT, Brody EA, Tighe DA, Park CH (1995) Prognostic significance of ST-segment depression during adenosine perfusion imaging. Am Heart J 130:58–66

    PubMed  CAS  Google Scholar 

  • Marshall PA, Dyer JM, Quick ME, Goodman JM (1996) Redox-sensitive homodimerization of Pex11p: a proposed mechanism to regulate peroxisomal division. J Cell Biol 135:123–137

    PubMed  CAS  Google Scholar 

  • Marzioch M, Erdmann R, Veenhuis M, Kunau WH (1994) PAS7 encodes a novel yeast member of the WD-40 protein family essential for import of 3-oxoacyl-CoA thiolase, a PTS2-containing protein, into peroxisomes. Embo J 13:4908–4918

    PubMed  CAS  Google Scholar 

  • Matsumura T, Otera H, Fujiki Y (2000) Disruption of the interaction of the longer isoform of Pex5p, Pex5pL, with Pex7p abolishes peroxisome targeting signal type 2 protein import in mammals. Study with a novel Pex5-impaired Chinese hamster ovary cell mutant. J Biol Chem 275:21715–21721

    PubMed  CAS  Google Scholar 

  • Matsuzono Y, Kinoshita N, Tamura S, Shimozawa N, Hamasaki M, Ghaedi K, Wanders RJ, Suzuki Y, Kondo N, Fujiki Y (1999) Human PEX19: cDNA cloning by functional complementation, mutation analysis in a patient with Zellweger syndrome, and potential role in peroxisomal membrane assembly. Proc Natl Acad Sci USA 96:2116–2121

    PubMed  CAS  Google Scholar 

  • McCollum D, Monosov E, Subramani S (1993) The pas8 mutant of Pichia pastoris exhibits the peroxisomal protein import deficiencies of Zellweger syndrome cells—the PAS8 protein binds to the COOH-terminal tripeptide peroxisomal targeting signal, and is a member of the TPR protein family. J Cell Biol 121:761–774

    PubMed  CAS  Google Scholar 

  • McNew JA, Goodman JM (1994) An oligomeric protein is imported into peroxisomes in vivo. J Cell Biol 127:1245–1257

    PubMed  CAS  Google Scholar 

  • Miura S, Kasuya-Arai I, Mori H, Miyazawa S, Osumi T, Hashimoto T, Fujiki Y (1992) Carboxyl-terminal consensus Ser-Lys-Leu-related tripeptide of peroxisomal proteins functions in vitro as a minimal peroxisome-targeting signal. J Biol Chem 267:14405–14411

    PubMed  CAS  Google Scholar 

  • Motley AM, Hettema EH, Ketting R, Plasterk R, Tabak HF (2000) Caenorhabditis elegans has a single pathway to target matrix proteins to peroxisomes. EMBO Rep 1:40–46

    PubMed  CAS  Google Scholar 

  • Mukai S, Ghaedi K, Fujiki Y (2002) Intracellular localization, function, and dysfunction of the peroxisometargeting signal type 2 receptor, Pex7p, in mammalian cells. J Biol Chem 277:9548–9561

    PubMed  CAS  Google Scholar 

  • Mullen RT, Lisenbee CS, Miernyk JA, Trelease RN (1999) Peroxisomal membrane ascorbate peroxidase is sorted to a membranous network that resembles a subdomain of the endoplasmic reticulum. Plant Cell 11:2167–2185

    PubMed  CAS  Google Scholar 

  • Mullen RT, Trelease RN (2000) The sorting signals for peroxisomal membrane-bound ascorbate peroxidase are within its C-terminal tail. J Biol Chem 275:16337–16344

    PubMed  CAS  Google Scholar 

  • Muntau AC, Mayerhofer PU, Paton BC, Kammerer S, Roscher AA (2000) Defective peroxisome membrane synthesis due to mutations in human PEX3 causes Zellweger syndrome, complementation group G. Am J Hum Genet 67:967–975

    PubMed  CAS  Google Scholar 

  • Murphy DJ, Vance J (1999) Mechanisms of lipid-body formation. Trends Biochem Sci 24:109–115

    PubMed  CAS  Google Scholar 

  • Nakagawa T, Imanaka T, Morita M, Ishiguro K, Yurimoto H, Yamashita A, Kato N, Sakai Y (2000) Peroxisomal membrane protein Pmp47 is essential in the metabolism of middle-chain fatty acid in yeast peroxisomes and Is associated with peroxisome proliferation. J Biol Chem 275:3455–3461

    PubMed  CAS  Google Scholar 

  • Neuwald AF, Aravind L, Spouge JL, Koonin EV (1999) AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res 9:27–43

    PubMed  CAS  Google Scholar 

  • Nito K, Hayashi M, Nishimura M (2002) Direct interaction and determination of binding domains among peroxisomal import factors in Arabidopsis thaliana. Plant Cell Physiol 43:355–366

    PubMed  CAS  Google Scholar 

  • Noguchi T, Fujiwara S (1988) Identification of mammalian aminotransferases utilizing glyoxylate or pyruvate as amino acceptor. Peroxisomal and mitochondrial asparagine aminotransferase. J Biol Chem 263:182–186

    PubMed  CAS  Google Scholar 

  • Novikoff AB, Shin WY (1964) The endoplasmatic reticulum in the Golgi zone and its relations to microbodies, Golgi apparatus and autophagic vacuoles in rat liver cells. J Microsc 3:187–206

    Google Scholar 

  • Ogura T, Wilkinson AJ (2001) AAA+ superfamily ATPases: common structure—diverse function. Genes Cells 6:575–597

    PubMed  CAS  Google Scholar 

  • Okumoto K, Abe I, Fujiki Y (2000) Molecular anatomy of the peroxin Pex12p: ring finger domain is essential for Pex12p function and interacts with the peroxisome-targeting signal type 1-receptor Pex5p and a ring peroxin, Pex10p. J Biol Chem 275:25700–25710

    PubMed  CAS  Google Scholar 

  • Okumoto K, Bogaki A, Tateishi K, Tsukamoto T, Osumi T, Shimozawa N, Suzuki Y, Orii T, Fujiki Y (1997) Isolation and characterization of peroxisome-deficient Chinese hamster ovary cell mutants representing human complementation group III. Exp Cell Res 233:11–20

    PubMed  CAS  Google Scholar 

  • Okumoto K, Itoh R, Shimozawa N, Suzuki Y, Tamura S, Kondo N, Fujiki Y (1998a) Mutations in PEX10 is the cause of Zellweger peroxisome deficiency syndrome of complementation group B. Hum Mol Genet 7:1399–1405

    PubMed  CAS  Google Scholar 

  • Okumoto K, Shimozawa N, Kawai A, Tamura S, Tsukamoto T, Osumi T, Moser H, Wanders RJ, Suzuki Y, Kondo N, Fujiki Y (1998b) PEX12, the pathogenic gene of group III Zellweger syndrome: cDNA cloning by functional complementation on a CHO cell mutant, patient analysis, and characterization of PEX12p. Mol Cell Biol 18:4324–4336

    PubMed  CAS  Google Scholar 

  • Otera H, Harano T, Honsho M, Ghaedi K, Mukai S, Tanaka A, Kawai A, Shimizu N, Fujiki Y (2000) The mammalian peroxin Pex5pL, the longer isoform of the mobile peroxisome targeting signal (PTS) type 1 transporter, translocates the Pex7p.PTS2 protein complex into peroxisomes via its initial docking site, Pex14p. J Biol Chem 275:21703–21714

    PubMed  CAS  Google Scholar 

  • Otera H, Okumoto K, Tateishi K, Ikoma Y, Matsuda E, Nishimura M, Tsukamoto T, Osumi T, Ohashi K, Higuchi O, Fujiki Y (1998) Peroxisome targeting signal type 1 (PTS1) receptor is involved in import of both PTS1 and PTS2: studies with PEX5-defective CHO cell mutants. Mol Cell Biol 18:388–399

    PubMed  CAS  Google Scholar 

  • Otera H, Setoguchi K, Hamasaki M, Kumashiro T, Shimizu N, Fujiki Y (2002) Peroxisomal targeting signal receptor Pex5p interacts with cargoes and import machinery components in a spatiotemporally differentiated manner: conserved Pex5p WXXXF/Y motifs are critical for matrix protein import. Mol Cell Biol 22:1639–1655

    PubMed  CAS  Google Scholar 

  • Passreiter M, Anton M, Lay D, Frank R, Harter C, Wieland FT, Gorgas K, Just WW (1998) Peroxisome biogenesis: involvement of ARF and coatomer. J Cell Biol 141:373–383

    PubMed  CAS  Google Scholar 

  • Patarca R, Fletcher MA (1992) Ring finger in the peroxisome assembly factor-1. FEBS Lett 312:1–2

    PubMed  CAS  Google Scholar 

  • Patel S, Latterich M (1998) The AAA team: related ATPases with diverse functions. Trends Cell Biol 8:65–71

    PubMed  CAS  Google Scholar 

  • Pause B, Diestelkotter P, Heid H, Just WW (1997) Cytosolic factors mediate protein insertion into the peroxisomal membrane. FEBS Lett 414:95–98

    PubMed  CAS  Google Scholar 

  • Pause B, Saffrich R, Hunziker A, Ansorge W, Just WW (2000) Targeting of the 22 kDa integral peroxisomal membrane protein. FEBS Lett 471:23–28

    PubMed  CAS  Google Scholar 

  • Pires JR, Hong X, Brockmann C, Volkmer-Engert R, Schneider-Mergener J, Oschkinat H, Erdmann R (2003) The ScPex13p SH3 domain exposes two distinct building sites for Pex5p and Pex14p. J Mol Biol (in press)

    Google Scholar 

  • Pool MR, Lopez-Huertas E, Baker A (1998) Characterization of intermediates in the process of plant peroxisomal protein import. Embo J 17:6854–6862

    PubMed  CAS  Google Scholar 

  • Preisig-Müller R, Muster G, Kindl H (1994) Heat shock enhances the amount of prenylated Dnaj protein at membranes of glyoxysomes. Eur J Biochem 219:57–63

    PubMed  Google Scholar 

  • Purdue PE, Lazarow PB (2001a) Peroxisome biogenesis. Annu Rev Cell Dev Biol 17:701–752

    PubMed  CAS  Google Scholar 

  • Purdue PE, Lazarow PB (2001b) Pex18p is constitutively degraded during peroxisome biogenesis. J Biol Chem 276:47684–47689

    PubMed  CAS  Google Scholar 

  • Purdue PE, Yang X, Lazarow PB (1998) Pex18p and Pex21p, a novel pair of related peroxins essential for peroxisomal targeting by the PTS2 pathway. J Cell Biol 143:1859–1869

    PubMed  CAS  Google Scholar 

  • Reguenga C, Oliveira ME, Gouveia AM, Sa-Miranda C, Azevedo JE (2001) Characterization of the mammalian peroxisomal import machinery: Pex2p, Pex5p, Pex12p, and Pex14p are subunits of the same protein assembly. J Biol Chem 276:29935–29942

    PubMed  CAS  Google Scholar 

  • Rehling P, Marzioch M, Niesen F, Wittke E, Veenhuis M, Kunau WH (1996) The import receptor for the peroxisomal targeting signal 2 (PTS2) in Saccharomyces cerevisiae is encoded by the PAS7 gene. Embo J 15:2901–2913

    PubMed  CAS  Google Scholar 

  • Rehling P, Skaletz-Rorowski A, Girzalsky W, Voorn-Brouwer T, Franse MM, Distel B, Veenhuis M, Kunau WH, Erdmann R (2000) Pex8p, an intraperoxisomal peroxin of Saccharomyces cerevisiae required for protein transport into peroxisomes binds the PTS1 receptor pex5p. J Biol Chem 275:3593–3602

    PubMed  CAS  Google Scholar 

  • Reumann S (2000) The structural properties of plant peroxisomes and their metabolic significance. Biol Chem 381:639–648

    PubMed  CAS  Google Scholar 

  • Rhodin J (1954) Correlation of ultrastructural organization and function in normal and experimentally changed peroxisomal convoluted tubule cells of the mouse kidney. Stockholm University, Aktiebolaget Godvil, Stockholm, Sweden

    Google Scholar 

  • Roermund CWvan, Drissen R, Berg Mvan den, Ijlst L, Hettema EH, Tabak HF, Waterham HR, Wanders RJ (2001) Identification of a peroxisomal ATP carrier required for medium-chain fatty acid beta-oxidation and normal peroxisome proliferation in Saccharomyces cerevisiae. Mol Cell Biol 21:4321–4329

    PubMed  Google Scholar 

  • Roermund CWvan, Tabak HF, Berg Mvan den, Wanders RJ, Hettema EH (2000) Pex11p plays a primary role in medium-chain fatty acid oxidation, a process that affects peroxisome number and size in Saccharomyces cerevisiae. J Cell Biol 150:489–498

    PubMed  Google Scholar 

  • Rottensteiner H, Palmieri L, Hartig A, Hamilton B, Ruis H, Erdmann R, Gurvitz A (2002) The peroxisomal transporter gene ANT1 is regulated by a deviant oleate response element (ORE): characterization of the signal for fatty acid induction. Biochem J 365:109–117

    PubMed  CAS  Google Scholar 

  • Sacksteder KA, Jones JM, South ST, Li X, Liu Y, Gould SJ (2000) PEX19 binds multiple peroxisomal membrane proteins, is predominantly cytoplasmic, and is required for peroxisome membrane synthesis. J Cell Biol 148:931–944

    PubMed  CAS  Google Scholar 

  • Saidowsky J, Dodt G, Kirchberg K, Wegner A, Nastainczyk W, Kunau WH, Schliebs W (2001) The diaromatic pentapeptide repeats of the human peroxisome import receptor PEX5 are separate high affinity binding sites for the peroxisomal membrane protein PEX14. J Biol Chem 276:34524–34529

    PubMed  CAS  Google Scholar 

  • Salomons FA, Kiel JA, Faber KN, Veenhuis M, van derKlei IJ (2000) Overproduction of Pex5p stimulates import of alcohol oxidase and dihydroxyacetone synthase in a Hansenula polymorpha Pex14 null mutant. J Biol Chem 275:12603–12611

    PubMed  CAS  Google Scholar 

  • Salomons FA, Nico Faber K, Veenhuis M, Klei IJvan der (2001) Peroxisomal remnant structures in Hansenula polymorpha Pex5 cells can develop into normal peroxisomes upon induction of the PTS2 protein amine oxidase. J Biol Chem 276:4190–4198

    PubMed  CAS  Google Scholar 

  • Salomons FA, Klei IJvan der, Kram AM, Harder W, Veenhuis M (1997) Brefeldin A interferes with peroxisomal protein sorting in the yeast Hansenula polymorpha. FEBS Lett 411:133–139

    PubMed  CAS  Google Scholar 

  • Santos MJ, Imanaka T, Shio H, Lazarow PB (1988a) Peroxisomal integral membrane proteins in control and Zellweger fibroblasts. J Biol Chem 263:10502–10509

    PubMed  CAS  Google Scholar 

  • Santos MJ, Imanaka T, Shio H, Small GM, Lazarow PB (1988b) Peroxisomal membrane ghosts in Zellweger syndrome—aberrant organelle assembly. Science 239:1536–1538

    PubMed  CAS  Google Scholar 

  • Schliebs W, Saidowsky J, Agianian B, Dodt G, Herberg FW, Kunau WH (1999) Recombinant human peroxisomal targeting signal receptor PEX5. Structural basis for interaction of PEX5 with PEX14. J Biol Chem 274:5666–5673

    PubMed  CAS  Google Scholar 

  • Schneiter R, Brugger B, Sandhoff R, Zellnig G, Leber A, Lampl M, Athenstaedt K, Hrastnik C, Eder S, Daum G, Paltauf F, Wieland FT, Kohlwein SD (1999) Electrospray ionization tandem mass spectrometry (ESI-MS/MS) analysis of the lipid molecular species composition of yeast subcellular membranes reveals acyl chain-based sorting/remodeling of distinct molecular species en route to the plasma membrane. J Cell Biol 146:741–754

    PubMed  CAS  Google Scholar 

  • Schrader M, Reuber BE, Morrell JC, Jimenez-Sanchez G, Obie C, Stroh TA, Valle D, Schroer TA, Gould SJ (1998) Expression of PEX11beta mediates peroxisome proliferation in the absence of extracellular stimuli. J Biol Chem 273:29607–29614

    PubMed  CAS  Google Scholar 

  • Shiao YJ, Lupo G, Vance JE (1995) Evidence that phosphatidylserine is imported into mitochondria via a mitochondria-associated membrane and that the majority of mitochondrial phosphatidylethanolamine is derived from decarboxylation of phosphatidylserine. J Biol Chem 270:11190–11198

    PubMed  CAS  Google Scholar 

  • Shimozawa N, Suzuki Y, Tomatsu S, Nakamura H, Kono T, Takada H, Tsukamoto T, Fujiki Y, Orii T, Kondo N (1998a) A novel mutation, R125X in peroxisome assembly factor-1 responsible for Zellweger syndrome. Hum Mutat Suppl 1:S134–1346

    Google Scholar 

  • Shimozawa N, Suzuki Y, Zhang Z, Imamura A, Ghaedi K, Fujiki Y, Kondo N (2000) Identification of PEX3 as the gene mutated in a Zellweger syndrome patient lacking peroxisomal remnant structures. Hum Mol Genet 9:1995–1999

    PubMed  CAS  Google Scholar 

  • Shimozawa N, Suzuki Y, Zhang Z, Imamura A, Kondo N, Kinoshita N, Fujiki Y, Tsukamoto T, Osumi T, Imanaka T, Orii T, Beemer F, Mooijer P, Dekker C, Wanders RJ (1998b) Genetic basis of peroxisomeassembly mutants of humans, Chinese hamster ovary cells, and yeast: identification of a new complementation group of peroxisome-biogenesis disorders apparently lacking peroxisomal-membrane ghosts. Am J Hum Genet 63:1898–1903

    PubMed  CAS  Google Scholar 

  • Shimozawa N, Suzuki Y, Zhang Z, Imamura A, Tsukamoto T, Osumi T, Tateishi K, Okumoto K, Fujiki Y, Orii T, Barth PG, Wanders RJ, Kondo N (1998c) Peroxisome biogenesis disorders: identification of a new complementation group distinct from peroxisome-deficient CHO mutants and not complemented by human PEX 13. Biochem Biophys Res Commun 243:368–371

    PubMed  CAS  Google Scholar 

  • Sichting M, Schell-Steven A, Prokisch H, Erdmann R, Rottensteiner (2003) Pex7p and Pex20p of Neurospora crassa function together on PTS2-dependent protein import into peroxisomes. Mol Biol Cell 14:810–821

    PubMed  CAS  Google Scholar 

  • Skoneczny M, Lazarow PB (1998) A novel, non-PTS1, peroxisomal import route dependent on the PTS1 receptor Pex5p. Mol Biol Cell 9:348a

    Google Scholar 

  • Small GM, Santos MJ, Imanaka T, Poulos A, Danks DM, Moser HW, Lazarow PB (1988) Peroxisomal integral membrane proteins in livers of patients with Zellweger syndrome, infantile Refsum’s disease and X-linked adrenoleukodystrophy. J Inherit Metab Dis 11:358–371

    PubMed  CAS  Google Scholar 

  • Smith JJ, Marelli M, Christmas RH, Vizeacoumar FJ, Dilworth DJ, Ideker T, Galitski T, Dimitrov K, Rachubinski RA, Aitchison JD (2002) Transcriptome profiling to identify genes involved in peroxisome assembly and function. J Cell Biol 158:259–271

    PubMed  CAS  Google Scholar 

  • Smith JJ, Rachubinski RA (2001) A role for the peroxin Pex8p in Pex20p-dependent thiolase import into peroxisomes of the yeast Yarrowia lipolytica. J Biol Chem 276:1618–1625

    PubMed  CAS  Google Scholar 

  • Snyder WB, Faber KN, Wenzel TJ, Koller A, Luers GH, Rangell L, Keller GA, Subramani S (1999a) Pex19p interacts with Pex3p and Pex10p and is essential for peroxisome biogenesis in Pichia pastoris. Mol Biol Cell 10:1745–1761

    PubMed  CAS  Google Scholar 

  • Snyder WB, Koller A, Choy AJ, Johnson MA, Cregg JM, Rangell L, Keller GA, Subramani S (1999b) Pex17p is required for import of both peroxisome membrane and lumenal proteins and interacts with Pex19p and the peroxisome targeting signal-receptor docking complex in Pichia pastoris. Mol Biol Cell 10:4005–4019

    PubMed  CAS  Google Scholar 

  • Soukupova M, Sprenger C, Gorgas K, Kunau WH, Dodt G (1999) Identification and characterization of the human peroxin PEX3. Eur J Cell Biol 78:357–374

    PubMed  CAS  Google Scholar 

  • South ST, Baumgart E, Gould SJ (2001) Inactivation of the endoplasmic reticulum protein translocation factor, Sec61p, or its homolog, Ssh1p, does not affect peroxisome biogenesis. Proc Natl Acad Sci USA 98:12027–12031

    PubMed  CAS  Google Scholar 

  • South ST, Gould SJ (1999) Peroxisome synthesis in the absence of preexisting peroxisomes. J Cell Biol 144:255–266

    PubMed  CAS  Google Scholar 

  • South ST, Sacksteder KA, Li X, Liu Y, Gould SJ (2000) Inhibitors of COPI and COPII do not block PEX3-mediated peroxisome synthesis. J Cell Biol 149:1345–1360

    PubMed  CAS  Google Scholar 

  • Steel GJ, Brownsword J, Stirling CJ (2002) Tail-anchored protein insertion into yeast ER requires a novel posttranslational mechanism which is independent of the SEC machinery. Biochemistry 41:11914–11920

    PubMed  CAS  Google Scholar 

  • Stein K, Schell-Steven A, Erdmann R, Rottensteiner H (2002) Interactions of Pex7p and Pex18p/Pex21p with the peroxisomal docking machinery: implications for the first steps in PTS2 protein import. Mol Cell Biol 22:6056–6069

    PubMed  CAS  Google Scholar 

  • Stewart MQ, Esposito RD, Gowani J, Goodman JM (2001) Alcohol oxidase and dihydroxyacetone synthase, the abundant peroxisomal proteins of methylotrophic yeasts, assemble in different cellular compartments. J Cell Sci 114:2863–2868

    PubMed  CAS  Google Scholar 

  • Subramani S (1992) Targeting of proteins into the peroxisomal matrix. J Membr Biol 125:99–106

    PubMed  CAS  Google Scholar 

  • Subramani S (1993) Protein import into peroxisomes and biogenesis of the organelle. Annu Rev Cell Biol 9:445–478

    PubMed  CAS  Google Scholar 

  • Subramani S (1996) Protein translocation into peroxisomes. J Biol Chem 271:32483–32486

    PubMed  CAS  Google Scholar 

  • Subramani S (1998) Components involved in peroxisome import, biogenesis, proliferation, turnover, and movement. Physiol Rev 78:171–188

    PubMed  CAS  Google Scholar 

  • Subramani S, Koller A, Snyder WB (2000) Import of peroxisomal matrix and membrane proteins. Annu Rev Biochem 69:399–418

    PubMed  CAS  Google Scholar 

  • Suzuki Y, Orii T, Takiguchi M, Mori M, Hijikata M, Hashimoto T (1987a) Biosynthesis of membrane polypeptides of rat liver peroxisomes. J Biochem (Tokyo) 101:491–496

    CAS  Google Scholar 

  • Suzuki Y, Shimozawa N, Orii T, Aikawa J, Tada K, Kuwabara T, Hashimoto T (1987b) Biosynthesis of peroxisomal membrane polypeptides in infants with Zellweger syndrome. J Inherit Metab Dis 10:297–300

    PubMed  CAS  Google Scholar 

  • Swinkels BW, Gould SJ, Bodnar AG, Rachubinski RA, Subramani S (1991) A novel, cleavable peroxisomal targeting signal at the amino-terminus of the rat 3-ketoacyl-CoA thiolase. Embo J 10:3255–3262

    PubMed  CAS  Google Scholar 

  • Szilard RK, Titorenko VI, Veenhuis M, Rachubinski RA (1995) Pay32p of the yeast Yarrowia lipolytica is an intraperoxisomal component of the matrix protein translocation machinery. J Cell Biol 131:1453–1469

    PubMed  CAS  Google Scholar 

  • Tabak HF, Braakman I, Distel B (1999) Peroxisomes: simple in function but complex in maintenance. Trends Cell Biol 9:447–453

    PubMed  CAS  Google Scholar 

  • Tam YY, Rachubinski RA (2002) Yarrowia lipolytica cells mutant for the PEX24 gene encoding a peroxisomal membrane peroxin mislocalize peroxisomal proteins and accumulate membrane structures containing both peroxisomal matrix and membrane proteins. Mol Biol Cell 13:2681–2691

    PubMed  CAS  Google Scholar 

  • Tamura S, Okumoto K, Toyama R, Shimozawa N, Tsukamoto T, Suzuki Y, Osumi T, Kondo N, Fujiki Y (1998a) Human PEX1 cloned by functional complementation on a CHO cell mutant is responsible for peroxisome-deficient Zellweger syndrome of complementation group I. Proc Natl Acad Sci USA 95:4350–4355

    PubMed  CAS  Google Scholar 

  • Tamura S, Shimozawa N, Suzuki Y, Tsukamoto T, Osumi T, Fujiki Y (1998b) A cytoplasmic AAA family peroxin, Pex1p, interacts with Pex6p. Biochem Biophys Res Commun 245:883–886

    PubMed  CAS  Google Scholar 

  • Tan X, Waterham HR, Veenhuis M, Cregg JM (1995) The Hansenula polymorpha PER8 gene encodes a novel peroxisomal integral membrane protein involved in proliferation. J Cell Biol 128:307–319

    PubMed  CAS  Google Scholar 

  • Terlecky SR, Legakis JE, Hueni SE, Subramani S (2001) Quantitative analysis of peroxisomal protein import in vitro. Exp Cell Res 263:98–106

    PubMed  CAS  Google Scholar 

  • Terlecky SR, Nuttley WM, McCollum D, Sock E, Subramani S (1995) The Pichia pastoris peroxisomal protein PAS8p is the receptor for the C-terminal tripeptide peroxisomal targeting signal. Embo J 14:3627–3634

    PubMed  CAS  Google Scholar 

  • Thompson SL, Krisans SK (1990) Rat liver peroxisomes catalyze the initial step in cholesterol synthesis. The condensation of acetyl-CoA units into acetoacetyl-CoA. J Biol Chem 265:5731–5735

    PubMed  CAS  Google Scholar 

  • Titorenko VI, Chan H, Rachubinski RA (2000a) Fusion of small peroxisomal vesicles in vitro reconstructs an early step in the in vivo multistep peroxisome assembly pathway of Yarrowia lipolytica. J Cell Biol 148:29–44

    PubMed  CAS  Google Scholar 

  • Titorenko VI, Eitzen GA, Rachubinski RA (1996) Mutations in the PAY5 gene of the yeast Yarrowia lipolytica cause the accumulation of multiple subpopulations of peroxisomes. J Biol Chem 271:20307–20314

    PubMed  CAS  Google Scholar 

  • Titorenko VI, Ogrydziak DM, Rachubinski RA (1997) Four distinct secretory pathways serve protein secretion, cell surface growth, and peroxisome biogenesis in the yeast Yarrowia lipolytica. Mol Cell Biol 17:5210–5226

    PubMed  CAS  Google Scholar 

  • Titorenko VI, Rachubinski RA (1998a) The endoplasmic reticulum plays an essential role in peroxisome biogenesis. Trends Biochem Sci 23:231–233

    PubMed  CAS  Google Scholar 

  • Titorenko VI, Rachubinski RA (1998b) Mutants of the yeast Yarrowia lipolytica defective in protein exit from the endoplasmic reticulum are also defective in peroxisome biogenesis. Mol Cell Biol 18:2789–2803

    PubMed  CAS  Google Scholar 

  • Titorenko VI, Rachubinski RA (2000) Peroxisomal membrane fusion requires two AAA family ATPases, Pex1p and Pex6p. J Cell Biol 150:881–886

    PubMed  CAS  Google Scholar 

  • Titorenko VI, Rachubinski RA (2001a) Dynamics of peroxisome assembly and function. Trends Cell Biol 11:22–29

    PubMed  CAS  Google Scholar 

  • Titorenko VI, Rachubinski RA (2001b) The life cycle of the peroxisome. Nat Rev Mol Cell Biol 2:357–368

    PubMed  CAS  Google Scholar 

  • Titorenko VI, Smith JJ, Szilard RK, Rachubinski RA (1998) Pex20p of the yeast Yarrowia lipolytica is required for the oligomerization of thiolase in the cytosol and for its targeting to the peroxisome. J Cell Biol 142:403–420

    PubMed  CAS  Google Scholar 

  • Titorenko VI, Smith JJ, Szilard RK, Rachubinski RA (2000b) Peroxisome biogenesis in the yeast Yarrowia lipolytica. Cell Biochem Biophys 32 Spring:21–26

    PubMed  CAS  Google Scholar 

  • Tsukamoto T, Hata S, Yokota S, Miura S, Fujiki Y, Hijikata M, Miyazawa S, Hashimoto T, Osumi T (1994a) Characterization of the signal peptide at the amino terminus of the rat peroxisomal 3-ketoacyl-CoA thiolase precursor. J Biol Chem 269:6001–6010

    PubMed  CAS  Google Scholar 

  • Tsukamoto T, Miura S, Fujiki Y (1991) Restoration by a 35 K membrane protein of peroxisome assembly in a peroxisome-deficient mammalian cell mutant. Nature 350:77–81

    PubMed  CAS  Google Scholar 

  • Tsukamoto T, Miura S, Nakai T, Yokota S, Shimozawa N, Suzuki Y, Orii T, Fujiki Y, Sakai F, Bogaki A, et al. (1995) Peroxisome assembly factor-2, a putative ATPase cloned by functional complementation on a peroxisome-deficient mammalian cell mutant. Nat Genet 11:395–401

    PubMed  CAS  Google Scholar 

  • Tsukamoto T, Shimozawa N, Fujiki Y (1994b) Peroxisome assembly factor 1: nonsense mutation in a peroxisome-deficient Chinese hamster ovary cell mutant and deletion analysis. Mol Cell Biol 14:5458–5465

    PubMed  CAS  Google Scholar 

  • Tsukamoto T, Yokota S, Fujiki Y (1990) Isolation and characterization of Chinese hamster ovary cell mutants defective in assembly of peroxisomes. J Cell Biol 110:651–660

    PubMed  CAS  Google Scholar 

  • Urquhart AJ, Kennedy D, Gould SJ, Crane DI (2000) Interaction of Pex5p, the type 1 peroxisome targeting signal receptor, with the peroxisomal membrane proteins Pex14p and Pex13p. J Biol Chem 275:4127–4136

    PubMed  CAS  Google Scholar 

  • Veenhuis M, Mateblowski M, Kunau WH, Harder W (1987) Proliferation of microbodies in Saccharomyces cerevisiae. Yeast 3:77–84

    PubMed  CAS  Google Scholar 

  • Voelker DR (1993) The ATP-dependent translocation of phosphatidylserine to the mitochondria is a process that is restricted to the autologous organelle. J Biol Chem 268:7069–7074

    PubMed  CAS  Google Scholar 

  • Voorn-Brouwer T, Kragt A, Tabak HF, Distel B (2001) Peroxisomal membrane proteins are properly targeted to peroxisomes in the absence of COPI-and COPII-mediated vesicular transport. J Cell Sci 114:2199–2204

    PubMed  CAS  Google Scholar 

  • Voorn-Brouwer T, Leij Ivan der, Hemrika W, Distel B, Tabak HF (1993) Sequence of the PAS8 gene, the product of which is essential for biogenesis of peroxisomes in Saccharomyces cerevisiae. Biochim Biophys Acta 1216:325–328

    PubMed  CAS  Google Scholar 

  • Walque Sde, Kiel JA, Veenhuis M, Opperdoes FR, Michels PA (1999) Cloning and analysis of the PTS-1 receptor in Trypanosoma brucei. Mol Biochem Parasitol 104:106–119

    PubMed  Google Scholar 

  • Walton PA, Hill PE, Subramani S (1995) Import of stably folded proteins into peroxisomes. Mol Biol Cell 6:675–683

    PubMed  CAS  Google Scholar 

  • Walton PA, Wendland M, Subramani S, Rachubinski RA, Welch WJ (1994) Involvement of 70-kD heatshock proteins in peroxisomal import. J Cell Biol 125:1037–1046

    PubMed  CAS  Google Scholar 

  • Wanders RJ, Schutgens RB, Barth PG (1995) Peroxisomal disorders: a review. J Neuropathol Exp Neurol 54:726–739

    PubMed  CAS  Google Scholar 

  • Wanders RJ, Tager JM (1998) Lipid metabolism in peroxisomes in relation to human disease. Mol Aspects Med 19:69–154

    PubMed  CAS  Google Scholar 

  • Wang X, Unruh MJ, Goodman JM (2001) Discrete targeting signals direct Pmp47 to oleate-induced peroxisomes in Saccharomyces cerevisiae. J Biol Chem 276:10897–10905

    PubMed  CAS  Google Scholar 

  • Waterham HR, Titorenko VI, Haima P, Cregg JM, Harder W, Veenhuis M (1994) The Hansenula polymorpha PER1 gene is essential for peroxisome biogenesis and encodes a peroxisomal matrix protein with both carboxy-and amino-terminal targeting signals. J Cell Biol 127:737–749

    PubMed  CAS  Google Scholar 

  • Wendland M, Subramani S (1993) Presence of cytoplasmic factors functional in peroxisomal protein import implicates organelle-associated defects in several human peroxisomal disorders. J Clin Invest 92:2462–2468

    PubMed  CAS  Google Scholar 

  • Wiebel FF, Kunau WH (1992) The Pas2 protein essential for peroxisome biogenesis is related to ubiquitinconjugating enzymes. Nature 359:73–76

    PubMed  CAS  Google Scholar 

  • Wiemer EA, Luers GH, Faber KN, Wenzel T, Veenhuis M, Subramani S (1996) Isolation and characterization of Pas2p, a peroxisomal membrane protein essential for peroxisome biogenesis in the methylotrophic yeast Pichia pastoris. J Biol Chem 271:18973–18980

    PubMed  CAS  Google Scholar 

  • Wiemer EA, Nuttley WM, Bertolaet BL, Li X, Francke U, Wheelock MJ, Anne UK, Johnson KR, Subramani S (1995) Human peroxisomal targeting signal-1 receptor restores peroxisomal protein import in cells from patients with fatal peroxisomal disorders. J Cell Biol 130:51–65

    PubMed  CAS  Google Scholar 

  • Will GK, Soukupova M, Hong X, Erdmann KS, Kiel JA, Dodt G, Kunau WH, Erdmann R (1999) Identification and characterization of the human orthologue of yeast Pex14p. Mol Cell Biol 19:2265–2277

    PubMed  CAS  Google Scholar 

  • Wimmer B, Lottspeich F, Klei Ivan der, Veenhuis M, Gietl C (1997) The glyoxysomal and plastid molecular chaperones (70-kDa heat shock protein) of watermelon cotyledons are encoded by a single gene. Proc Natl Acad Sci USA 94:13624–13629

    PubMed  CAS  Google Scholar 

  • Wirtz KW (1982) Phospholipid transfer proteins. In: Jost P, Griffith OH (eds) Lipid-protein interactions. Wiley, New York, NY, USA, pp 151–231

    Google Scholar 

  • Wirtz KW (1991) Phospholipid transfer proteins. Annu Rev Biochem 60:73–99

    PubMed  CAS  Google Scholar 

  • Xie Y, Varshavsky A (1999) The E2-E3 interaction in the N-end rule pathway: the RING-H2 finger of E3 is required for the synthesis of multiubiquitin chain. Embo J 18:6832–6844

    PubMed  CAS  Google Scholar 

  • Yahraus T, Braverman N, Dodt G, Kalish JE, Morrell JC, Moser HW, Valle D, Gould SJ (1996) The peroxisome biogenesis disorder group 4 gene, PXAAA1, encodes a cytoplasmic ATPase required for stability of the PTS1 receptor. Embo J 15:2914–2923

    PubMed  CAS  Google Scholar 

  • Yamamoto K, Fahimi HD (1987) Three-dimensional reconstruction of a peroxisomal reticulum in regenerating rat liver: evidence of interconnections between heterogeneous segments. J Cell Biol 105:713–722

    PubMed  CAS  Google Scholar 

  • Yamasaki M, Hashiguchi N, Fujiwara C, Imanaka T, Tsukamoto T, Osumi T (1999) Formation of peroxisomes from peroxisomal ghosts in a peroxisome-deficient mammalian cell mutant upon complementation by protein microinjection. J Biol Chem 274:35293–35296

    PubMed  CAS  Google Scholar 

  • Yang X, Purdue PE, Lazarow PB (2001) Eci1p uses a PTS1 to enter peroxisomes: either its own or that of a partner, Dci1p. Eur J Cell Biol 80:126–138

    PubMed  CAS  Google Scholar 

  • Zaar K, Angermuller S, Volkl A, Fahimi HD (1986) Pipecolic acid is oxidized by renal and hepatic peroxisomes. Implications for Zellweger’s cerebro-hepato-renal syndrome (CHRS). Exp Cell Res 164:267–271

    PubMed  CAS  Google Scholar 

  • Zaar K, Volkl A, Fahimi HD (1987) Association of isolated bovine kidney cortex peroxisomes with endoplasmic reticulum. Biochim Biophys Acta 897:135–142

    PubMed  CAS  Google Scholar 

  • Zhang JW, Lazarow PB (1996) Peb1p (Pas7p) is an intraperoxisomal receptor for the NH2-terminal, type 2, peroxisomal targeting sequence of thiolase: Peb1p itself is targeted to peroxisomes by an NH2-terminal peptide. J Cell Biol 132:325–334

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Erdmann .

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag

About this chapter

Cite this chapter

Eckert, J.H., Erdmann, R. (2003). Peroxisome biogenesis. In: Reviews of Physiology, Biochemistry and Pharmacology. Reviews of Physiology, Biochemistry and Pharmacology, vol 147. Springer, Berlin, Heidelberg. https://doi.org/10.1007/s10254-003-0007-z

Download citation

  • DOI: https://doi.org/10.1007/s10254-003-0007-z

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-01365-5

  • Online ISBN: 978-3-540-36622-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics