Skip to main content

Advertisement

Log in

LncPRYP4-3 serves as a novel diagnostic biomarker for dissecting subtypes of metabolic associated fatty liver disease by targeting RPS4Y2

  • Original Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Longitudinal studies have improved current diagnostics and management of metabolic associated fatty liver disease (MAFLD) patients by liver biopsy and therapeutic intervention, yet the deficiency of biomarker spectrum for dissecting subtypes largely hinders the symptomatic treatment. We originally enriched serum from peripheral blood of 618 healthy donors (HD) and 580 MAFLD (400 NAFL, 180 NASH) patients according to multiple clinicopathological indicators. Microarray profiling and qRT-PCR were conducted to identify lncRNAs as candidate biomarkers of MAFLD. Then, we analyzed the matching score of the indicated lncRNA with CAP or MAFLD-associated pathological parameters as well. Additionally, we took advantage of interaction network together with gene expression profiling analysis to further explore the underlying target genes of the identified lncRNA. Herein, we found CAP in nearly all of the NAFL (399/400) and NASH (179/180) patients was higher than that in the HDs (611/618). The differentially expressed lncRNAs were involved in multiple metabolic or immunologic processes by regulating MAFLD-associated pathways. Of them, serum lncPRYP4-3 was identified as a novel candidate biomarker of MAFLD, which was further confirmed by correlation analysis with clinical indicators. Thereafter, we deduced PRS4Y2 was a candidate target of lncPRYP4-3 and mediated the dysfunction in NAFL and NASH patients. Serum lncPRYP4-3 served as a novel biomarker of MAFLD and helped distinguish the subtypes and benefit precise intervention therapy. Our findings also provided overwhelming new evidence for the alteration in biological processes and gene ontology in MAFLD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CAP:

Controlled attenuation parameter

LSM:

Liver stiffness measurement

ALT:

Alanine aminotransferase

AST:

Aspartate aminotransferase

BMI:

Body mass index

BUN:

Blood urea nitrogen

GGT:

γ-Glutamyl transferase

ALP:

Alkaline phosphatase

TB:

Total bilirubin

LDL-C:

Low-density lipoprotein-cholesterol

HDL-C:

High-density lipoprotein-cholesterol

TG:

Triglyceride

TC:

Total cholesterol

SUA:

Serum uric acid

PChE:

Pseudocholinesterase

PLT:

Platelet count

FBG:

Fasting blood glucose

NAFL:

Nonalcoholic fatty liver

NASH:

Nonalcoholic steatohepatitis

MAFLD:

Metabolic associated fatty liver disease.

References

  1. Ballestri S, Zona S, Targher G, Romagnoli D, Baldelli E, Nascimbeni F, Roverato A, Guaraldi G, Lonardo A. Nonalcoholic fatty liver disease is associated with an almost twofold increased risk of incident type 2 diabetes and metabolic syndrome. Evidence from a systematic review and meta-analysis. J Gastroenterol Hepatol. 2016;31(5):936–44.

    CAS  PubMed  Google Scholar 

  2. Tarantino G, Citro V, Capone D. Nonalcoholic fatty liver disease: a challenge from mechanisms to therapy. J Clin Med. 2019;9(1):15.

    PubMed Central  Google Scholar 

  3. Sanyal AJ. NASH: A global health problem. Hepatol Res. 2011;41(7):670–4.

    PubMed  Google Scholar 

  4. Paredes-Turrubiarte G, Gonzalez-Chavez A, Perez-Tamayo R, Salazar-Vazquez BY, Hernandez VS, Garibay-Nieto N, Fragoso JM, Escobedo G. Severity of non-alcoholic fatty liver disease is associated with high systemic levels of tumor necrosis factor alpha and low serum interleukin 10 in morbidly obese patients. Clin Exp Med. 2016;16(2):193–202.

    CAS  PubMed  Google Scholar 

  5. Gatselis NK, Ntaios G, Makaritsis K, Dalekos GN. Adiponectin: a key playmaker adipocytokine in non-alcoholic fatty liver disease. Clin Exp Med. 2014;14(2):121–31.

    CAS  PubMed  Google Scholar 

  6. Eslam M, Newsome PN, Sarin SK, Anstee QM, Targher G, Romero-Gomez M, Zelber-Sagi S, Wai-Sun Wong V, Dufour JF, Schattenberg JM et al, A new definition for metabolic dysfunction-associated fatty liver disease: an international expert consensus statement. J Hepatol 2020.

  7. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64(1):73–84.

    PubMed  Google Scholar 

  8. Rinella ME. Nonalcoholic fatty liver disease: a systematic review. JAMA. 2015;313(22):2263–73.

    CAS  PubMed  Google Scholar 

  9. Nobili V, Alisi A, Valenti L, Miele L, Feldstein AE, Alkhouri N. NAFLD in children: new genes, new diagnostic modalities and new drugs. Nat Rev Gastroenterol Hepatol. 2019;16(9):517–30.

    PubMed  Google Scholar 

  10. Arrese M, Cabrera D, Kalergis AM, Feldstein AE. Innate immunity and inflammation in NAFLD/NASH. Dig Dis Sci. 2016;61(5):1294–303.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Younossi ZM, Ratziu V, Loomba R, Rinella M, Anstee QM, Goodman Z, Bedossa P, Geier A, Beckebaum S, Newsome PN, et al. Obeticholic acid for the treatment of non-alcoholic steatohepatitis: interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial. Lancet. 2019;394(10215):2184–96.

    CAS  PubMed  Google Scholar 

  12. Neuschwander-Tetri BA, Loomba R, Sanyal AJ, Lavine JE, Van Natta ML, Abdelmalek MF, Chalasani N, Dasarathy S, Diehl AM, Hameed B, et al. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet. 2015;385(9972):956–65.

    CAS  PubMed  Google Scholar 

  13. Hu YY, Dong NL, Qu Q, Zhao XF, Yang HJ. The correlation between controlled attenuation parameter and metabolic syndrome and its components in middle-aged and elderly nonalcoholic fatty liver disease patients. Medicine (Baltimore). 2018;97(43):e12931.

    Google Scholar 

  14. Brunt EM, Wong VW, Nobili V, Day CP, Sookoian S, Maher JJ, Bugianesi E, Sirlin CB, Neuschwander-Tetri BA, Rinella ME. Nonalcoholic fatty liver disease. Nat Rev Dis Primers. 2015;1:15080.

    PubMed  Google Scholar 

  15. Karlas T, Petroff D, Sasso M, Fan JG, Mi YQ, de Ledinghen V, Kumar M, Lupsor-Platon M, Han KH, Cardoso AC, et al. Individual patient data meta-analysis of controlled attenuation parameter (CAP) technology for assessing steatosis. J Hepatol. 2017;66(5):1022–30.

    PubMed  Google Scholar 

  16. Hyogo H, Yamagishi S, Maeda S, Fukami K, Ueda S, Okuda S, Nakahara T, Kimura Y, Ishitobi T, Chayama K. Serum asymmetric dimethylarginine levels are independently associated with procollagen III N-terminal peptide in nonalcoholic fatty liver disease patients. Clin Exp Med. 2014;14(1):45–51.

    CAS  PubMed  Google Scholar 

  17. Eslam M, George J. Genetic contributions to NAFLD: leveraging shared genetics to uncover systems biology. Nat Rev Gastroenterol Hepatol. 2020;17(1):40–52.

    PubMed  Google Scholar 

  18. Eslam M, George J. Genetic insights for drug development in NAFLD. Trends Pharmacol Sci. 2019;40(7):506–16.

    CAS  PubMed  Google Scholar 

  19. Eslam M, Valenti L, Romeo S. Genetics and epigenetics of NAFLD and NASH: clinical impact. J Hepatol. 2018;68(2):268–79.

    CAS  PubMed  Google Scholar 

  20. Moran M, Cheng X, Shihabudeen Haider Ali MS, Wase N, Nguyen N, Yang W, Zhang C, DiRusso C, Sun X. Transcriptome analysis-identified long noncoding RNA CRNDE in maintaining endothelial cell proliferation, migration, and tube formation. Sci Rep. 2019;9(1):19548.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011;12(12):861–74.

    CAS  PubMed  Google Scholar 

  22. Ma S, Long T, Huang WJM: Noncoding RNAs in inflammation and colorectal cancer. RNA Biol 2019:1-8

  23. Michalik KM, You X, Manavski Y, Doddaballapur A, Zornig M, Braun T, John D, Ponomareva Y, Chen W, Uchida S, et al. Long noncoding RNA MALAT1 regulates endothelial cell function and vessel growth. Circ Res. 2014;114(9):1389–97.

    CAS  PubMed  Google Scholar 

  24. Shi L, Hong X, Ba L, He X, Xiong Y, Ding Q, Yang S, Peng G. Long non-coding RNA ZNFX1-AS1 promotes the tumor progression and metastasis of colorectal cancer by acting as a competing endogenous RNA of miR-144 to regulate EZH2 expression. Cell Death Dis. 2019;10(3):150.

    PubMed  PubMed Central  Google Scholar 

  25. Li D, Cheng M, Niu Y, Chi X, Liu X, Fan J, Fan H, Chang Y, Yang W. Identification of a novel human long non-coding RNA that regulates hepatic lipid metabolism by inhibiting SREBP-1c. Int J Biol Sci. 2017;13(3):349–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen X, Xu Y, Zhao D, Chen T, Gu C, Yu G, Chen K, Zhong Y, He J, Liu S, et al. LncRNA-AK012226 is involved in fat accumulation in db/db mice fatty liver and non-alcoholic fatty liver disease cell model. Front Pharmacol. 2018;9:888.

    PubMed  PubMed Central  Google Scholar 

  27. Wang TH, Lin YS, Chen Y, Yeh CT, Huang YL, Hsieh TH, Shieh TM, Hsueh C, Chen TC. Long non-coding RNA AOC4P suppresses hepatocellular carcinoma metastasis by enhancing vimentin degradation and inhibiting epithelial-mesenchymal transition. Oncotarget. 2015;6(27):23342–57.

    PubMed  PubMed Central  Google Scholar 

  28. Shi X, Sun M, Liu H, Yao Y, Song Y. Long non-coding RNAs: a new frontier in the study of human diseases. Cancer Lett. 2013;339(2):159–66.

    CAS  PubMed  Google Scholar 

  29. Yan C, Chen J, Chen N. Long noncoding RNA MALAT1 promotes hepatic steatosis and insulin resistance by increasing nuclear SREBP-1c protein stability. Sci Rep. 2016;6:22640.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen G, Yu D, Nian X, Liu J, Koenig RJ, Xu B, Sheng L. LncRNA SRA promotes hepatic steatosis through repressing the expression of adipose triglyceride lipase (ATGL). Sci Rep. 2016;6:35531.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Li P, Ruan X, Yang L, Kiesewetter K, Zhao Y, Luo H, Chen Y, Gucek M, Zhu J, Cao H. A liver-enriched long non-coding RNA, lncLSTR, regulates systemic lipid metabolism in mice. Cell Metab. 2015;21(3):455–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Gong J, Qi X, Zhang Y, Yu Y, Lin X, Li H, Hu Y. Long noncoding RNA linc00462 promotes hepatocellular carcinoma progression. Biomed Pharmacother. 2017;93:40–7.

    CAS  PubMed  Google Scholar 

  33. Cui H, Zhang Y, Zhang Q, Chen W, Zhao H, Liang J. A comprehensive genome-wide analysis of long noncoding RNA expression profile in hepatocellular carcinoma. Cancer Med. 2017;6(12):2932–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Wei Y, Hou H, Zhang L, Zhao N, Li C, Huo J, Liu Y, Zhang W, Li Z, Liu D, et al. JNKi- and DAC-programmed mesenchymal stem/stromal cells from hESCs facilitate hematopoiesis and alleviate hind limb ischemia. Stem Cell Res Ther. 2019;10(1):186.

    PubMed  PubMed Central  Google Scholar 

  35. Zhao Q, Zhang L, Wei Y, Yu H, Zou L, Huo J, Yang H, Song B, Wei T, Wu D, et al. Systematic comparison of hUC-MSCs at various passages reveals the variations of signatures and therapeutic effect on acute graft-versus-host disease. Stem Cell Res Ther. 2019;10(1):354.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang X, Yang Y, Zhang L, Lu Y, Zhang Q, Fan D, Zhang Y, Zhang Y, Ye Z, Xiong D. Mesenchymal stromal cells as vehicles of tetravalent bispecific Tandab (CD3/CD19) for the treatment of B cell lymphoma combined with IDO pathway inhibitor D-1-methyl-tryptophan. J Hematol Oncol. 2017;10(1):56.

    PubMed  PubMed Central  Google Scholar 

  37. Zhang L, Wang H, Liu C, Wu Q, Su P, Wu D, Guo J, Zhou W, Xu Y, Shi L, et al. MSX2 initiates and accelerates mesenchymal stem/stromal cell specification of hPSCs by regulating TWIST1 and PRAME. Stem Cell Reports. 2018;11(2):497–513.

    PubMed  PubMed Central  Google Scholar 

  38. Zhang L, Liu C, Wang H, Wu D, Su P, Wang M, Guo J, Zhao S, Dong S, Zhou W, et al. Thrombopoietin knock-in augments platelet generation from human embryonic stem cells. Stem Cell Res Ther. 2018;9(1):194.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang W, Liu C, Wu D, Liang C, Zhang L, Zhang Q, Liu Y, Xia M, Wang H, Su P, et al. Decitabine improves platelet recovery by down-regulating IL-8 level in MDS/AML patients with thrombocytopenia. Blood Cells Mol Dis. 2019;76:66–71.

    CAS  PubMed  Google Scholar 

  40. Huo J, Zhang L, Ren X, Li C, Li X, Dong P, Zheng X, Huang J, Shao Y, Ge M, et al. Multifaceted characterization of the signatures and efficacy of mesenchymal stem/stromal cells in acquired aplastic anemia. Stem Cell Res Ther. 2020;11(1):59.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Yao J, Chen N, Wang X, Zhang L, Huo J, Chi Y, Li Z, Han Z. Human supernumerary teeth-derived apical papillary stem cells possess preferable characteristics and efficacy on hepatic fibrosis in mice. Stem Cells Int. 2020;2020:6489396.

    PubMed  PubMed Central  Google Scholar 

  43. Brunt EM, Kleiner DE. Challenges in the hepatic histopathology in non-alcoholic fatty liver disease. Gut. 2017;66(9):1539–40.

    PubMed  Google Scholar 

  44. Kleiner DE, Brunt EM, Wilson LA, Behling C, Guy C, Contos M, Cummings O, Yeh M, Gill R, Chalasani N, et al. Association of histologic disease activity with progression of nonalcoholic fatty liver disease. JAMA Netw Open. 2019;2(10):e1912565.

    PubMed  PubMed Central  Google Scholar 

  45. Middleton MS, Van Natta ML, Heba ER, Alazraki A, Trout AT, Masand P, Brunt EM, Kleiner DE, Doo E, Tonascia J, et al. Diagnostic accuracy of magnetic resonance imaging hepatic proton density fat fraction in pediatric nonalcoholic fatty liver disease. Hepatology. 2018;67(3):858–72.

    CAS  PubMed  Google Scholar 

  46. Myers RP, Pollett A, Kirsch R, Pomier-Layrargues G, Beaton M, Levstik M, Duarte-Rojo A, Wong D, Crotty P, Elkashab M. Controlled Attenuation Parameter (CAP): a noninvasive method for the detection of hepatic steatosis based on transient elastography. Liver Int. 2012;32(6):902–10.

    PubMed  Google Scholar 

  47. Liu K, Wong VW, Lau K, Liu SD, Tse YK, Yip TC, Kwok R, Chan AY, Chan HL, Wong GL. Prognostic value of controlled attenuation parameter by transient elastography. Am J Gastroenterol. 2017;112(12):1812–23.

    PubMed  Google Scholar 

  48. Petta S, Di Marco V, Pipitone RM, Grimaudo S, Buscemi C, Craxi A, Buscemi S. Prevalence and severity of nonalcoholic fatty liver disease by transient elastography: genetic and metabolic risk factors in a general population. Liver Int. 2018;38(11):2060–8.

    CAS  PubMed  Google Scholar 

  49. Zhao XY, Xiong X, Liu T, Mi L, Peng X, Rui C, Guo L, Li S, Li X, Lin JD. Long noncoding RNA licensing of obesity-linked hepatic lipogenesis and NAFLD pathogenesis. Nat Commun. 2018;9(1):2986.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Di Mauro S, Scamporrino A, Petta S, Urbano F, Filippello A, Ragusa M, Di Martino MT, Scionti F, Grimaudo S, Pipitone RM, et al. Serum coding and non-coding RNAs as biomarkers of NAFLD and fibrosis severity. Liver Int. 2019;39(9):1742–54.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (81660410), Natural Science Foundation of Tianjin (19JCQNJC12500), Science and Technology Project of Tianjin (17ZXSCSY00030), Project funded by China Postdoctoral Science Foundation (2019M661033), Natural Science Foundation of Yunnan (2017FE468-174) and Yunnan Science and Technology Project (2015HB073, CXTD201610, L-2017018, 2018NS0100), Nanyang Science and Technology Project of He-nan Province (JCQY012), Key project funded by Department of Science and Technology of Shangrao City (2020, to ZCH), the Reserve Training Project of "Thousand" Project of Health Science and Technology Talents in Kunming (2019-sw-52), NHC Key Laboratory of Drug Addiction Medicine (Kunming Medical University). The authors thank all the nurses and patients involved in this study. We also thank the precision medicine division of Health-Biotech (Tianjin) Stem Cell Research Institute Co., Ltd. and the enterprise postdoctoral working station of Tianjin Chase Sun Pharmaceutical Co., Ltd. for their technical support.

Funding

The work was supported by the National Natural Science Foundation of China (81660410), Natural Science Foundation of Tianjin (19JCQNJC12500), Science and Technology Project of Tianjin (17ZXSCSY00030), Project funded by China Postdoctoral Science Foundation (2019M661033), Natural Science Foundation of Yunnan (2017FE468-174) and Yunnan Science and Technology Project (2015HB073, CXTD201610, L-2017018, 2018NS0100), Nanyang Science and Technology Project of He-nan Province (JCQY012), Key project funded by Department of Science and Technology of Shangrao City (2020, to ZCH), the Reserve Training Project of "Thousand" Project of Health Science and Technology Talents in Kunming (2019-sw-52), NHC Key Laboratory of Drug Addiction Medicine (Kunming Medical University).

Author information

Authors and Affiliations

Authors

Contributions

HY and QL contributed to collection and assembly of data, manuscript writing; LZ, MZ, JN, FX, LY, QQ, YL, ZD and CX contributed to collection and assembly of data; and HY, LZ and KW contributed to conception and design, data analysis and interpretation, manuscript writing, final approval of manuscript.

Corresponding authors

Correspondence to Hongju Yang, Leisheng Zhang or Kunhua Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests and all authors consent to publish the data.

Availability of data and material

All data generated or analyzed during this study are included in this published article and its supplementary information files. Meanwhile, the datasets used and analyzed during the current study are also available from the corresponding author on reasonable request.

Code availability

Not applicable.

Ethics approval and consent to participate

The study was performed in accordance with the principles set by the Declaration of Helsinki, and was approved by the ethics committee of First Affiliated Hospital of Kunming Medical University (approval number: 2020-L-08). Informed consent was obtained from all individual participants included in the study.

Consent for participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Li, Q., Zhang, L. et al. LncPRYP4-3 serves as a novel diagnostic biomarker for dissecting subtypes of metabolic associated fatty liver disease by targeting RPS4Y2. Clin Exp Med 20, 587–600 (2020). https://doi.org/10.1007/s10238-020-00636-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-020-00636-1

Keywords

Navigation