Skip to main content

Advertisement

Log in

Selective inhibition of CDK7 ameliorates experimental arthritis in mice

  • Original Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Cyclin-dependent kinases (CDKs) have emerged as anti-inflammatory targets. The purpose of this study was to explore the therapeutic effects of a selective CDK7 inhibitor, BS-181, on mice with established collagen-induced arthritis (CIA). CIA mice were administered intraperitoneally with BS-181 (10 mg/kg) twice daily for 2 weeks. Control mice received vehicle only. Arthritis severity and joint histopathology were examined. The proinflammatory cytokines and anti-type II collagen antibodies (anti-CII) were determined by ELISA. IkB kinase (IKK)-β/NF-κB activation in the arthritic joints was assessed by Western blot. The ratio of Th17 cells was determined by flow cytometry. In vitro, splenocytes from mice with established CIA were stimulated with CII in the presence or absence of BS-181 and cytokines were detected. BS-181 treatment reduced the clinical score and histological damage in CIA mice. The serum proinflammatory cytokines (IL-6, IL-1β and IL-17) and anti-CII IgG2a levels were also decreased by BS-181 administration. Moreover, IKK-β/NF-κB signaling pathway was inhibited in arthritic joints. BS-181 administration also decreased the ratio of Th17 cells. In addition, CIA splenocytes pretreated with BS-181 produced less proinflammatory cytokines in vitro. These findings indicate that CDK7 inhibition by BS-181 is effective in the treatment of CIA, which might be mediated by suppression of IKK-β/NF-κB activation and Th17 cell response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Coulthard LG, Costello J, Robinson B, Shiels IA, Taylor SM, Woodruff TM. Comparative efficacy of a secretory phospholipase A2 inhibitor with conventional anti-inflammatory agents in a rat model of antigen-induced arthritis. Arthritis Res Ther. 2011;13:R42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Curtis JR, Xie F, Chen L, et al. The incidence of gastrointestinal perforations among rheumatoid arthritis patients. Arthritis Rheum. 2011;63:346–51.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bergman GJ, Hochberg MC, Boers M, Wintfeld N, Kielhorn A, Jansen JP. Indirect comparison of tocilizumab and other biologic agents in patients with rheumatoid arthritis and inadequate response to disease-modifying antirheumatic drugs. Semin Arthritis Rheum. 2010;39:425–41.

    Article  CAS  PubMed  Google Scholar 

  4. Sharma P, Pathak K. Are biological targets the final goal for rheumatoid arthritis therapy? Expert Opin Biol Ther. 2012;12:1611–22.

    Article  CAS  PubMed  Google Scholar 

  5. Leitch AE, Haslett C, Rossi AG. Cyclin-dependent kinase inhibitor drugs as potential novel anti-inflammatory and pro-resolution agents. Br J Pharmacol. 2009;158:1004–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu L, Schwartz B, Tsubota Y, et al. Cyclin-dependent kinase inhibitors block leukocyte adhesion and migration. J Immunol. 2008;180:1808–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nonomura Y, Nagasaka K, Hagiyama H, et al. Direct modulation of rheumatoid inflammatory mediator expression in retinoblastoma protein-dependent and -independent pathways by cyclin-dependent kinase 4/6. Arthritis Rheum. 2006;54:2074–83.

    Article  CAS  PubMed  Google Scholar 

  8. Silver DL, Montell DJ. A new trick for Cyclin-Cdk: activation of STAT. Dev Cell. 2003;4:148–9.

    Article  CAS  PubMed  Google Scholar 

  9. MacLachlan TK, Sang N, De Luca A, Puri PL, Levrero M, Giordano A. Binding of CDK9 to TRAF2. J Cell Biochem. 1998;71:467–78.

    Article  CAS  PubMed  Google Scholar 

  10. Wang S, Fischer PM. Cyclin-dependent kinase 9: a key transcriptional regulator and potential drug target in oncology, virology and cardiology. Trends Pharmacol Sci. 2008;29:302–13.

    Article  PubMed  Google Scholar 

  11. Schmerwitz UK, Sass G, Khandoga AG, Joore J, Mayer BA, Berberich N, et al. BS-181 protects against inflammation by attenuating leukocyte-endothelial interaction via inhibition ofcyclin-dependent kinase 9. Arterioscler Thromb Vasc Biol. 2011;31:280–8.

    Article  CAS  PubMed  Google Scholar 

  12. Leitch AE, Lucas CD, Marwick JA, Duffin R, Haslett C, Rossi AG. Cyclin-dependent kinases 7 and 9 specifically regulate neutrophil transcription and their inhibition drives apoptosis to promote resolution of inflammation. Cell Death Differ. 2012;19:1950–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Du J, Wei N, Guan T, et al. Inhibition of CDKS by roscovitine suppressed LPS-induced *NO production through inhibiting NFkappaB activation and BH4 biosynthesis in macrophages. Am J Physiol Cell Physiol. 2009;297:C742–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yoshida H, Kotani H, Kondo T, et al. CDK inhibitors suppress Th17 and promote iTreg differentiation, and ameliorate experimental autoimmune encephalomyelitis in mice. Biochem Biophys Res Commun. 2013;435:378–84.

    Article  CAS  PubMed  Google Scholar 

  15. Ali S, Heathcote DA, Kroll SH, et al. The development of a selective cyclin-dependent kinase inhibitor that shows antitumor activity. Cancer Res. 2009;69:6208–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jain A, Olsen HS, Vyzasatya R, et al. Fully recombinant IgG2a Fc multimers (stradomers) effectively treat collagen-induced arthritis and prevent idiopathic thrombocytopenic purpura in mice. Arthritis Res Ther. 2012;14:R192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Alzabin S, Kong P, Medghalchi M, Palfreeman A, Williams R, Sacre S. Investigation of the role of endosomal Toll-like receptors in murine collagen-induced arthritis reveals a potential role for TLR7 in disease maintenance. Arthritis Res Ther. 2012;14:R142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mondal S, Martinson JA, Ghosh S, Watson R, Pahan K. Protection of Tregs, suppression of Th1 and Th17 cells, and amelioration of experimental allergic encephalomyelitis by a physically-modified saline. PLoS One. 2012;7:e51869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Brand DD, Marion TN, Myers LK, et al. Autoantibodies to murine type II collagen in collagen-induced arthritis: a comparison of susceptible and nonsusceptible strains. J Immunol. 1996;157:5178–84.

    CAS  PubMed  Google Scholar 

  20. Bamborough P, Morse MA, Ray KP. Targeting IKKβ for the treatment of rheumatoid arthritis. Drug News Perspect. 2010;23:483–90.

    CAS  PubMed  Google Scholar 

  21. Zhu J, Yamane H, Paul WE. Differentiation of effector CD4 T cell populations. Ann Rev Immunol. 2010;28:445–89.

    Article  CAS  Google Scholar 

  22. Tanaka T, Kishimoto T. Targeting interleukin-6: all the way to treat autoimmune and inflammatory diseases. Int J Biol Sci. 2012;8:1227–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Woodrick RS, Ruderman EM. IL-6 inhibition for the treatment of rheumatoid arthritis and other conditions. Bull NYU Hosp Jt Dis. 2012;70:195–9.

    PubMed  Google Scholar 

  24. Rannou F, François M, Corvol MT, Berenbaum F. Cartilage breakdown in rheumatoid arthritis. Joint Bone Spine. 2006;73:29–36.

    Article  CAS  PubMed  Google Scholar 

  25. Dinarello CA. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood. 2011;117:3720–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tak PP, Bresnihan B. The pathogenesis and prevention of joint damage in rheumatoid arthritis: advances from synovial biopsy and tissue analysis. Arthritis Rheum. 2000;43:2619–33.

    Article  CAS  PubMed  Google Scholar 

  27. Dayer JM. The pivotal role of interleukin-1 in the clinical manifestations of rheumatoid arthritis. Rheumatology (Oxford). 2003;42(Suppl 2):ii3–10.

    CAS  Google Scholar 

  28. Park MJ, Park HS, Oh HJ, et al. IL-17-deficient allogeneic bone marrow transplantation prevents the induction of collagen-induced arthritis in DBA/1J mice. Exp Mol Med. 2012;44:694–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kellner H. Targeting interleukin-17 in patients with active rheumatoid arthritis: rationale and clinical potential. Ther Adv Musculoskelet Dis. 2013;5:141–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang Y, Ren G, Guo M, et al. Synergistic effects of interleukin-1β and interleukin-17A antibodies on collagen-induced arthritis mouse model. Int Immunopharmacol. 2013;15:199–205.

    Article  CAS  PubMed  Google Scholar 

  31. Okamoto H, Yoshio T, Kaneko H, Yamanaka H. Inhibition of NF-kappaB signaling by fasudil as a potential therapeutic strategy for rheumatoid arthritis. Arthritis Rheum. 2010;62:82–92.

    Article  CAS  PubMed  Google Scholar 

  32. Schopf L, Savinainen A, Anderson K, et al. IKKbeta inhibition protects against bone and cartilage destruction in a rat model of rheumatoid arthritis. Arthritis Rheum. 2006;54:3163–73.

    Article  CAS  PubMed  Google Scholar 

  33. Kim KW, Cho ML, Park MK, et al. Increased interleukin-17 production via a phosphoinositide 3-kinase/Akt and nuclear factor kappaB-dependent pathway in patients with rheumatoid arthritis. Arthritis Res Ther. 2005;7:R139–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sekine C, Sugihara T, Miyake S, et al. Successful treatment of animal models of rheumatoid arthritis with small-molecule cyclin-dependent kinase inhibitors. J Immunol. 2008;180:1954–61.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

All authors declare no conflicts of interest in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Xia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, Y., Lin, LY., Liu, ML. et al. Selective inhibition of CDK7 ameliorates experimental arthritis in mice. Clin Exp Med 15, 269–275 (2015). https://doi.org/10.1007/s10238-014-0305-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-014-0305-6

Keywords

Navigation