Skip to main content
Log in

Effect of prostaglandin I2 analogs on monocyte chemoattractant protein-1 in human monocyte and macrophage

  • Original Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Chemokines play essential roles during inflammatory responses and in pathogenesis of inflammatory diseases. Monocyte chemotactic protein-1 (MCP-1) is a critical chemokine in the development of atherosclerosis and acute cardiovascular syndromes. MCP-1, by its chemotactic activity, causes diapedesis of monocytes from the lumen to the subendothelial space that leads to atherosclerotic plaque formation. Prostaglandin I2 (PGI2) analogs are used clinically for patients with pulmonary hypertension and have anti-inflammatory effects. However, little is known about the effect of PGI2 analogs on the MCP-1 production in human monocytes and macrophages. We investigated the effects of three conventional (iloprost, beraprost and treprostinil) and one new (ONO-1301) PGI2 analogs, on the expression of MCP-1 expression in human monocytes and macrophages. Human monocyte cell line, THP-1 cell, was treated with PGI2 analogs after LPS stimulation. Supernatants were harvested to measure MCP-1 levels and measured by ELISA. To explore which receptors involved the effects of PGI2 analogs on the expression of MCP-1 expression, IP and EP, PPAR-α and PPAR-γ receptor antagonists were used. Forskolin, a cAMP activator, was used to further confirm the involvement of cAMP on MCP-1 production in human monocytes. Three PGI2 analogs suppressed LPS-induced MCP-1 production in THP-1 cells and THP-1-induced macrophages. Higher concentrations of ONO-1301 also had the suppressive effect. CAY 10449, an IP receptor antagonist, could reverse the effects on MCP-1 production of iloprost on THP-1 cells. Other reported PGI2 receptor antagonists including EP1, EP2, EP4, PPAR-α and PPAR-γ antagonists could not reverse the effect. Forskolin, a cAMP activator, also suppressed MCP-1 production in THP-1 cells. PGI2 analogs suppressed LPS-induced MCP-1 production in human monocytes and macrophages via the IP receptor and cAMP pathway. The new PGI2 analog (ONO-1301) was not better than conventional PGI2 analog in the suppression of MCP-1 production in human monocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Luster AD. Chemokines: chemotactic cytokines that mediate inflammation. N Engl J Med. 1998;338:436–45.

    Article  CAS  PubMed  Google Scholar 

  2. Davies MJ. The pathophysiology of acute coronary syndromes. Heart. 2000;83:361–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhong L, Chen WQ, Ji XP, Zhang M, Zhao YX, Yao GH, et al. Dominant-negative mutation of monocyte chemoattractant protein-1 prevents vulnerable plaques from rupture in rabbits independent of serum lipid levels. J Cell Mol Med. 2008;12:2362–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mori E, Komori K, Yamaoka T, Tanii M, Kataoka C, Takeshita A, et al. Essential role of monocyte chemoattractant protein-1 in development of restenotic changes (neointimal hyperplasia and constrictive remodeling) after balloon angioplasty in hypercholesterolemic rabbits. Circulation. 2002;105:2905–10.

    Article  CAS  PubMed  Google Scholar 

  5. Li J, Guo Y, Luan X, Qi T, Li D, Chen Y, Ji X, Zhang Y, Chen W. Independent roles of monocyte chemoattractant protein-1, regulated on activation, normal T-cell expressed and secreted and fractalkine in the vulnerability of coronary atherosclerotic plaques. Circ J. 2012;76:2167–73.

    Article  CAS  PubMed  Google Scholar 

  6. Kaya Z, Katus HA, Rose NR. Cardiac troponins and autoimmunity: their role in the pathogenesis of myocarditis and of heart failure. Clin Immunol. 2010;134:80–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Niu J, Kolattukudy PE. Role of MCP-1 in cardiovascular disease: molecular mechanisms and clinical implications. Clin Sci (Lond). 2009;117:95–109.

    Article  CAS  Google Scholar 

  8. Warner TD, Mitchell JA. Cyclooxygenases: new forms, new inhibitors, and lessons from the clinic. FASEB J. 2004;18:790–804.

    Article  CAS  PubMed  Google Scholar 

  9. Helliwell RJ, Adams LF, Mitchell MD. Prostaglandin synthases: recent developments and a novel hypothesis. Prostaglandins Leukot Essent Fatty Acids. 2004;70:101–13.

    Article  CAS  PubMed  Google Scholar 

  10. Kunikata T, Yamane H, Segi E, et al. Suppression of allergic inflammation by the prostaglandin E receptor subtype EP3. Nat Immunol. 2005;6:524–31.

    Article  CAS  PubMed  Google Scholar 

  11. Aronoff DM, Peres CM, Serezani CH, Ballinger MN, Carstens JK, Coleman N, Moore BB, Peebles RS, Faccioli LH, Peters-Golden M. Synthetic prostacyclin analogs differentially regulate macrophage function via distinct analog-receptor binding specificities. J Immunol. 2007;178:1628–34.

    Article  CAS  PubMed  Google Scholar 

  12. Idzko M, Hammad H, van Nimwegen M, Kool M, Vos N, Hoogsteden HC, Lambrecht BN. Inhaled iloprost suppresses the cardinal features of asthma via inhibition of airway dendritic cell function. J Clin Invest. 2007;117:464–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hung CH, Chu YT, Suen JL, Lee MS, Chang HW, Lo YC, Jong YJ. Regulation of cytokine expression in human plasmacytoid dendritic cells by prostaglandin I2 analogues. Eur Respir J. 2009;33:405–10.

    Article  CAS  PubMed  Google Scholar 

  14. Suzuki J, Ogawa M, Sakai Y, Hirata Y, Isobe M, Nagai R. A prostacycline analog prevents chronic myocardial remodeling in murine cardiac allografts. Int Heart J. 2012;53:64–7.

    Article  CAS  PubMed  Google Scholar 

  15. Daigneault M, Preston JA, Marriott HM, Whyte MK, Dockrell DH. The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages. PLoS ONE. 2010;5:e8668.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kuo CH, Ko YC, Yang SN, Chu YT, Wang WL, Huang SK, Chen HN, Wei WJ, Jong YJ, Hung CH. Effects of PGI2 analogues on Th1- and Th2-related chemokines in monocytes via epigenetic regulation. J Mol Med. 2011;89:29–41.

    Article  CAS  PubMed  Google Scholar 

  17. Zhou W, Hashimoto K, Goleniewska K, O’Neal JF, Ji S, Blackwell TS, Fitzgerald GA, Egan KM, Geraci MW, Peebles RS Jr. Prostaglandin I2 analogs inhibit proinflammatory cytokine production and T cell stimulatory function of dendritic cells. J Immunol. 2007;178:702–10.

    Article  CAS  PubMed  Google Scholar 

  18. Warner TD, Mitchell JA. Cyclooxygenases: new forms, new inhibitors, and lessons from the clinic. FASEB J. 2004;18:790–804.

    Article  CAS  PubMed  Google Scholar 

  19. Idzko M, Hammad H, van Nimwegen M, Kool M, Vos N, Hoogsteden HC, Lambrecht BN. Inhaled iloprost suppresses the cardinal features of asthma via inhibition of airway dendritic cell function. J Clin Invest. 2007;117:464–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hoeper MM, et al. Long-term treatment of primary pulmonary hypertension with aerosolized iloprost, a prostacyclin analogue. N Engl J Med. 2000;342:1866–70.

    Article  CAS  PubMed  Google Scholar 

  21. Ohman MK, Eitzman DT. Targeting MCP-1 to reduce vascular complications of obesity. Recent Pat Cardiovasc Drug Discov. 2009;4:164–76.

    Article  CAS  PubMed  Google Scholar 

  22. Daissormont IT, Kraaijeveld AO, Biessen EA. Chemokines as therapeutic targets for atherosclerotic plaque destabilization and rupture. Future Cardiol. 2009;5:273–84.

    Article  CAS  PubMed  Google Scholar 

  23. Grant SM, Goa KL. Iloprost: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in peripheral vascular disease, myocardial ischaemia and extracorporeal circulation procedures. Drugs. 1992;43:889–924.

    Article  CAS  PubMed  Google Scholar 

  24. Aronoff DM, Peres CM, Serezani CH, Ballinger MN, Carstens JK, Coleman N, Moore BB, Peebles RS, Faccioli LH, Peters-Golden M. Synthetic prostacyclin analogs differentially regulate macrophage function via distinct analog–receptor binding specificities. J Immunol. 2007;178:1628–34.

    Article  CAS  PubMed  Google Scholar 

  25. Narumiya S, Sugimoto Y, Ushikubi F. Prostanoid receptors: structures, properties, and functions. Physiol Rev. 1999;79:1193–226.

    CAS  PubMed  Google Scholar 

  26. Suzuki J, Ogawa M, Sakai Y, Hirata Y, Isobe M, Nagai R. A prostacycline analog prevents chronic myocardial remodeling in murine cardiac allografts. Int Heart J. 2012;53:64–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from Medical Research Fund (No. 101-06 and 101-03) of Kaohsiung Armed Forces General Hospital and from National Science Council (NSC 102-2314-B-037-052 and NSC 102-2314-B-037-048) of the Republic of China, and Kaohsiung Medical University Hospital Research Foundation KMUH102-2T04, grants from Kaohsiung Municipal Ta-Tung Hospital KMTTH-101-009, KMTTH-102-002, KMTTH 102-008 and grants from Kaohsiung Municipal Hsiao-Kang Hospital, Kmhk-102-007.

Conflict of Interest

All authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih-Hsing Hung.

Additional information

Ming-Kai Tsai, Chong-Chao Hsieh, Chang-Hung Kuo and Chih-Hsing Hung have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsai, MK., Hsieh, CC., Kuo, HF. et al. Effect of prostaglandin I2 analogs on monocyte chemoattractant protein-1 in human monocyte and macrophage. Clin Exp Med 15, 245–253 (2015). https://doi.org/10.1007/s10238-014-0304-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-014-0304-7

Keywords

Navigation