Skip to main content
Log in

A monoclonal antibody (Mc178-Ab) targeted to the ecto-ATP synthase β-subunit-induced cell apoptosis via a mechanism involving the MAKase and Akt pathways

  • Review Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Ecto-ATP synthase has been considered to be an effective target for cancer recently. As inhibitors of ecto-ATP synthase were found to be cytotoxic for tumor cells, a monoclonal antibody (Mc178-Ab) against ecto-ATP synthase was generated in our previous study that exhibited both anti-angiogenic and anti-tumorigenic effects. However, the mechanism of action of Mc178-Ab and its downstream pathways for anti-tumor effects remain unclear. In this research, we intended to investigate the mechanism of the anti-tumor action of Mc178-Ab. The expressions of cell surface ATP synthase on A549 and CHO cells were confirmed by flow cytometry and confocal microscope. Proliferation and apoptosis were examined after the treatment with Mc178-Ab. In order to examine the activity of ecto-ATP synthase changed by Mc178-Ab, extracellular ATP generation and intracellular pH levels were assessed. The phosphorylation of the signaling molecules, MAPKase and Akt, was analyzed by western blot. Cell proliferation was blocked, and apoptosis was induced in A549 cells treated with Mc178-Ab, as determined by MTT assay and flow cytometry analysis of Annexin-V/PI staining separately. The intracellular pH level and extracellular ATP generation were also decreased after Mc178-Ab treatment. Finally, western blot data revealed that the phosphorylation of JNK and p38 was increased, while the phosphorylation of ERK and Akt was decreased in A549 cells treated with Mc178-Ab. Compared with A549 cells, Mc178-Ab had less effect on CHO cells. The decreased intracellular pH levels and the altered concentration of extracellular ATP may contribute to the mechanisms of the effect of Mc178-Ab on A549 and CHO cells. The results also suggested that the anti-tumor effect of Mc178-Ab was associated with MAPKase and Akt pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lee T-Y, Muschal S, Pravda EA et al (2009) Angiostatin regulates the expression of antiangiogenic and proapoptotic pathways via targeted inhibition of mitochondrial proteins. Blood 114(9):1987–1998

    Article  PubMed  CAS  Google Scholar 

  2. Dass CR, Tran TMN, Choong PFM (2007) Angiogenesis inhibitors and the need for anti-angiogenic therapeutics. J Dent Res 86(10):927–936

    Article  PubMed  CAS  Google Scholar 

  3. Ahmad Z, Laughlin T (2010) Medicinal chemistry of ATP synthase: a potential drug target of dietary polyphenols and amphibian antimicrobial peptides. Curr Med Chem 17(25):2822–2836

    Article  PubMed  CAS  Google Scholar 

  4. Zhang X, Gao F, Yu LL et al (2008) Dual functions of a monoclonal antibody against cell surface F1F0 ATP synthase on both HUVEC and tumor cells. Acta Pharmacol Sin 29(8):942–950

    Article  PubMed  CAS  Google Scholar 

  5. Mowery YM, Pizzo SV (2008) Targeting cell surface F1F0 ATP synthase in cancer therapy. Cancer Biol Ther 7(11):1836–1838

    Article  PubMed  CAS  Google Scholar 

  6. Chi SL, Pizzo SV (2006) Angiostatin is directly cytotoxic to tumor cells at low extracellular pH: a mechanism dependent on cell surface-associated ATP synthase. Cancer Res 66(2):875–882

    Article  PubMed  CAS  Google Scholar 

  7. Kurup A, Lin C-W, Murry DJ et al (2006) Recombinant human angiostatin (rh Angiostatin) in combination with paclitaxel and carboplatin in patients with advanced non-small-cell lung cancer: a phase II study from Indiana University. Ann Onc 17(1):97–103

    Article  CAS  Google Scholar 

  8. Vichalkovski A, Gresko E, Hess D, Restuccia DF, Hemmings BA (2010) PKB/Akt phosphorylation of the transcription factor Twist-1 at Ser42 inhibits p53 activity in response to DNA damage. Oncogene 29(24):3554–3565

    Article  PubMed  CAS  Google Scholar 

  9. Foster K, Wang Y, Zhou D, Wright C (2009) Dependence on PI3K/Akt signaling for malignant rhabdoid tumor cell survival. Cancer Chemother Pharmacol 63(5):783–791

    Article  PubMed  CAS  Google Scholar 

  10. Densham RM, Todd DE, Balmanno K, Cook SJ (2008) ERK1/2 and p38 cooperate to delay progression through G1 by promoting cyclin D1 protein turnover. Cell Signal 20(11):1986–1994

    Article  PubMed  CAS  Google Scholar 

  11. Reddy KB, Nabha SM, Atanaskova N (2003) Role of MAP kinase in tumor progression and invasion. Cancer metastasis reviews 22(4):395–403

    Article  PubMed  CAS  Google Scholar 

  12. Basu S, Harfouche R, Soni S et al (2009) Nanoparticle-mediated targeting of MAPK signaling predisposes tumor to chemotherapy. Proceedings of the National Academy of Sciences 106(19):7957–7961

    Article  CAS  Google Scholar 

  13. Kennedy N, Davis R (2005) Role of JNK in tumor development. Cell cycle (Georgetown, Tex.) 2(3):199–201

    Google Scholar 

  14. Lu G, Shen H, Chung M, Ong C (2007) Critical role of oxidative stress and sustained JNK activation in aloe-emodin-mediated apoptotic cell death in human hepatoma cells. Carcinogenesis 28(9):1937–1945

    Article  PubMed  CAS  Google Scholar 

  15. Adachi S, Shimizu M, Shirakami Y et al (2009) (−)-Epigallocatechin gallate downregulates EGF receptor via phosphorylation at Ser1046/1047 by p38 MAPK in colon cancer cells. Carcinogenesis 30(9):1544–1552

    Article  PubMed  CAS  Google Scholar 

  16. Cho H, Park S, Hwang E et al (2010) Gadd45b mediates Fas-induced apoptosis by enhancing the interaction between p38 and retinoblastoma tumor suppressor. Journal of Biological Chemistry 285(33):25500–25505

    Article  PubMed  CAS  Google Scholar 

  17. Kennedy N, Cellurale C, Davis R (2007) A radical role for p38 MAPK in tumor initiation. Cancer Cell 11(2):101–103

    Article  PubMed  CAS  Google Scholar 

  18. Fan Y, Chen H, Qiao B et al (2007) Opposing effects of ERK and p38 MAP kinases on HeLa cell apoptosis induced by dipyrithione. Molecules and Cells 23(1):30–38

    PubMed  CAS  Google Scholar 

  19. Li P, Jayarama S, Ganesh L et al (2010) Akt-phosphorylated mitogen-activated kinase-activating death domain protein (MADD) inhibits TRAIL-induced apoptosis by blocking Fas-associated death domain (FADD) association with death receptor 4. The Journal of biological chemistry 285(29):22713–22722

    Article  PubMed  CAS  Google Scholar 

  20. Widenmaier S, Ao Z, Kim S, Warnock G, McIntosh C (2009) Suppression of p38 MAPK and JNK via Akt-mediated inhibition of apoptosis signal-regulating kinase 1 constitutes a core component of the ¦Â-cell pro-survival effects of glucose-dependent insulinotropic polypeptide. Journal of Biological Chemistry 284(44):30372–30382

    Article  PubMed  CAS  Google Scholar 

  21. Junttila M, Li S, Westermarck J (2008) Phosphatase-mediated crosstalk between MAPK signaling pathways in the regulation of cell survival. The FASEB Journal 22(4):954–965

    Article  CAS  Google Scholar 

  22. Autret A, Martin-Latil S, Brisac C et al (2008) Early phosphatidylinositol 3-kinase/Akt pathway activation limits poliovirus-induced JNK-mediated cell death. J Virol 82(7):3796–3806

    Article  PubMed  CAS  Google Scholar 

  23. Martinez LO, Jacquet S, Esteve JP et al (2003) Ectopic beta-chain of ATP synthase is an apolipoprotein A-I receptor in hepatic HDL endocytosis. Nature 421(6918):75–79

    Article  PubMed  CAS  Google Scholar 

  24. Franck P, Petitipain N, Cherlet M et al (1996) Measurement of intracellular pH in cultured cells by flow cytometry with BCECF-AM. J Biotechnol 46(3):187–195

    Article  PubMed  CAS  Google Scholar 

  25. Pedersen P, Amzel L (1993) ATP synthases: structure reaction center, mechanism, and regulation of one of nature’s most unique machines. The Journal of biological chemistry 268(14):9937–9940

    PubMed  CAS  Google Scholar 

  26. Ueno H, Suzuki T, Kinosita K, Yoshida M (2005) ATP-driven stepwise rotation of FoF1-ATP synthase. Proc Natl Acad Sci USA 102(5):1333–1338

    Article  PubMed  CAS  Google Scholar 

  27. Stevens T, Forgac M (1997) Structure, function and regulation of the vacuolar (H+)-ATPase. Annual review of cell and developmental biology 13(1):779–808

    Article  PubMed  CAS  Google Scholar 

  28. Das B, Mondragon MO, Sadeghian M, Hatcher VB, Norin AJ (1994) A novel ligand in lymphocyte-mediated cytotoxicity: expression of the beta subunit of H+ transporting ATP synthase on the surface of tumor cell lines. J Exp Med 180(1):273–281

    Article  PubMed  CAS  Google Scholar 

  29. Chi SL, Pizzo SV (2006) Cell surface F1Fo ATP synthase: a new paradigm? Ann Med 38(6):429–438

    Article  PubMed  CAS  Google Scholar 

  30. Ma Z, Cao M, Liu Y et al (2010) Mitochondrial F1Fo-ATP synthase translocates to cell surface in hepatocytes and has high activity in tumor-like acidic and hypoxic environment. Acta Biochimica et Biophysica Hungarica 42(8):530–537

    Article  CAS  Google Scholar 

  31. Hernandez A, Serrano G, Herrera-Palau R, Perez-Castineira J, Serrano A (2010) Intraorganellar acidification by V-ATPases: a target in cell proliferation and cancer therapy. Recent Pat Anticancer Drug Discov 5(2):88–98

    Article  PubMed  CAS  Google Scholar 

  32. He B, Deng C, Zhang M, Zou D, Xu M (2007) Reduction of intracellular pH inhibits the expression of VEGF in K562 cells after targeted inhibition of the Na+/H+ exchanger. Leukemia research 31(4):507–514

    Article  PubMed  CAS  Google Scholar 

  33. Hirpara JL, Clement M-V, Pervaiz S (2001) Intracellular acidification triggered by mitochondrial-derived hydrogen peroxide is an effector mechanism for drug-induced apoptosis in tumor cells. J Biol Chem 276(1):514–521

    Article  PubMed  CAS  Google Scholar 

  34. Schelling JR, Abu Jawdeh BG (2008) Regulation of cell survival by Na+/H+ exchanger-1. Am J Physiol Renal Physiol 295(3):F625–F632

    Google Scholar 

  35. Zheng M, Hou R, Xiao R (2004) Acidosis-induced p38 MAPK activation and its implication in regulation of cardiac contractility. Acta Pharmacol Sin 25:1299–1305

    PubMed  CAS  Google Scholar 

  36. Kim K, Lee Y (2004) Amiloride augments TRAIL-induced apoptotic death by inhibiting phosphorylation of kinases and phosphatases associated with the P13K-Akt pathway. Oncogene 24(3):355–366

    Article  Google Scholar 

  37. Moser TL, Kenan DJ, Ashley TA et al (2001) Endothelial cell surface F1–F0 ATP synthase is active in ATP synthesis and is inhibited by angiostatin. Proc Natl Acad Sci USA 98(12):6656–6661

    Article  PubMed  CAS  Google Scholar 

  38. Yang D, Elner SG, Clark AJ et al (2010) Activation of P2X receptors induces apoptosis in human retinal pigment epithelium. Invest Ophthalmol Vis Sci:iovs 10-6172

  39. Ornelas I, Ventura A (2010) Involvement of the PI3K/Akt pathway in ATP-induced proliferation of developing retinal cells in culture. Int J Dev Neurosci

  40. White N, Burnstock G (2006) P2 receptors and cancer. Trends Pharmacol Sci 27(4):211–217

    Article  PubMed  CAS  Google Scholar 

  41. Schafer R, Sedehizade F, Welte T, Reiser G (2003) ATP-and UTP-activated P2Y receptors differently regulate proliferation of human lung epithelial tumor cells. American Journal of Physiology- Lung Cellular and Molecular Physiology 285(2):376–385

    Google Scholar 

  42. Gerasimovskaya E, Tucker D, Weiser-Evans M et al (2005) Extracellular ATP-induced proliferation of adventitial fibroblasts requires phosphoinositide 3-kinase, Akt, mammalian target of rapamycin, and p70 S6 kinase signaling pathways. Journal of Biological Chemistry 280(3):1838–1848

    Article  PubMed  CAS  Google Scholar 

  43. Franke H, Sauer C, Rudolph C et al (2009) P2 receptor-mediated stimulation of the PI3-K/Akt-pathway in vivo. Glia 57(10):1031–1045

    Article  PubMed  CAS  Google Scholar 

  44. Eriksson K, Magnusson P, Dixelius J, Claesson-Welsh L, Cross M (2003) Angiostatin and endostatin inhibit endothelial cell migration in response to FGF and VEGF without interfering with specific intracellular signal transduction pathways. FEBS letters 536(1–3):19–24

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National High Technology Research and Development Program of China (863 Program, No. 2008AA 02Z121).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Wj., Ma, Z., Liu, Yw. et al. A monoclonal antibody (Mc178-Ab) targeted to the ecto-ATP synthase β-subunit-induced cell apoptosis via a mechanism involving the MAKase and Akt pathways. Clin Exp Med 12, 3–12 (2012). https://doi.org/10.1007/s10238-011-0133-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-011-0133-x

Keywords

Navigation