Skip to main content

Advertisement

Log in

Analysis of differentially expressed genes in human rectal carcinoma using suppression subtractive hybridization

  • Original Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

The existence and treatment of rectal cancer are important for the function of defecation and the quality of life. However, the precise mechanisms of rectal carcinogenesis remain unclear. To screen the overexpressed gene in rectal carcinoma, we performed suppressive subtractive hybridization (SSH) on rectal carcinoma cells and the corresponding normal rectal cells. A total of 64 recombinant clones were subjected to DNA sequencing analysis, and 9 known genes were found to overexpressed in the tumors compared with those of the normal tissues. The genes are ST3 beta-galactoside alpha-2,3-sialyltransferase (ST3GAL5), interferon-induced transmembrane protein 3 (IFITM3), platelet-derived growth factor A–associated protein 1 (PDAP1), AlkB alkylating repair homolog 3 (ALKBH3), nucleoside diphosphate linked moiety X (Nudix)-type motif 14 (NUDT14), calponin 2 (CNN2), mitogen-activated protein kinase 14 (MAPK14), aconitase 1 (ACO1), and selenophosphate synthetase 1 (SEPHS1). The expression profiles of the genes were further confirmed in rectal carcinoma cells and the corresponding normal rectal cells of 12 patients by quantitative real-time RT–PCR. Our results revealed that ST3GAL5, IFITM3, PDAP1, ALKBH3, NUDT14, CNN2, MAPK14, ACO1, and SEPHS1 may be involved in rectal carcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Slattery ML, Curtin K, Wolff RK et al (2009) A comparison of colon and rectal somatic DNA alterations. Dis Colon Rectum 52:1304–1311

    Article  PubMed  Google Scholar 

  2. Samowitz WS, Curtin K, Wolff RK et al (2009) Microsatellite instability and survival in rectal cancer. Cancer Causes Control 20:1763–1768

    Article  PubMed  Google Scholar 

  3. Dall’Olio F, Chiricolo M (2001) Sialyltransferase in cancer. Glycoconj J 18:841–851

    Article  PubMed  Google Scholar 

  4. Wang PH, Li YF, Juang CM et al (2001) Altered mRNA expression of sialyltransferase in squamous cell carcinomas of the cervix. Gynecol Oncol 83:121–127

    Article  PubMed  CAS  Google Scholar 

  5. Wang PH, Lee YR, Juang CM et al (2005) Altered mRNA expression of sialyltransferase in ovarian cancers. Gynecol Oncol 99:631–639

    Article  PubMed  CAS  Google Scholar 

  6. Recchi MA, Hebbar M, Hornez L et al (1998) Multiplex reverse transcription polymerase chain reaction assessment of sialyltransferase expression in human breast cancer. Cancer Res 58:4066–4070

    PubMed  CAS  Google Scholar 

  7. Mondal S, Chandra S, Mandal C (2010) Elevated mRNA level of hST6Gal I and hST3Gal V positively correlates with the high risk of pediatric acute leukemia. Leuk Res 34:463–470

    Article  PubMed  CAS  Google Scholar 

  8. Schneider F, Kemmner W, Haensch W et al (2001) Overexpression of sialyltransferase CMP-sialic acid: Galbeta1, 3GalNAc-R alpha6-Sialyltransferase is related to poor patient survival in human colorectal carcinomas. Cancer Res 61:4605–4611

    PubMed  CAS  Google Scholar 

  9. Zhang L, Zhou W, Velculescu VE et al (1997) Gene expression profiles in normal and cancer cells. Science 276:1268–1272

    Article  PubMed  CAS  Google Scholar 

  10. Watanabe R, Ohyama C, Aoki H et al (2002) Ganglioside GM3 overexpression induces apoptosis and reduces malignant potential in murine bladder cancer. Cancer Res 62:3850–3854

    PubMed  CAS  Google Scholar 

  11. Gretschel S, Haensch W, Schlag PM et al (2003) Clinical relevance of sialyltransferases ST6GAL-I and ST3GAL-III in gastric cancer. Oncol 65:139–145

    Article  CAS  Google Scholar 

  12. Wang PH, Li YF, Juang CM et al (2002) Expression of sialyltransferase family members in cervix squamous cell carcinoma correlates with lymph node metastasis. Gynecol Oncol 86:45–52

    Article  PubMed  CAS  Google Scholar 

  13. Zhu Y, Srivatana U, Ullah A et al (2001) Suppression of a sialyltransferase by antisense DNA reduces invasiveness of human colon cancer cells in vitro. Biochim Biophys Acta 1536:148–160

    PubMed  CAS  Google Scholar 

  14. Wu F, Dassopoulos T, Cope L et al (2007) Genome-wide gene expression differences in Crohn’s disease and ulcerative colitis from endoscopic pinch biopsies:insights into distinctive pathogenesis. Inflamm Bowel Dis 13:807–821

    Article  PubMed  Google Scholar 

  15. Yang Y, Lee JH, Kim KY et al (2005) The interferon-inducible 9–27 gene modulates the susceptibility to natural killer cells and the invasiveness of gastric cancer cells. Cancer Lett 221:191–200

    Article  PubMed  CAS  Google Scholar 

  16. Andreu P, Colnot S, Godard C et al (2006) Identification of the IFITM family as a new molecular marker in human colorectal tumors. Cancer Res 66:1949–1955

    Article  PubMed  CAS  Google Scholar 

  17. Sundberg C, Branting M, Gerdin B et al (1997) Tumor cell and connective tissue cell interactions in human colorectal adenocarcinoma. Transfer of platelet-derived growth factor-AB/BB to stromal cells. Am J Pathol 151:479–492

    PubMed  CAS  Google Scholar 

  18. Dong J, Grunstein J, Tejada M et al (2004) VEGF-null cells require PDGFR alpha signaling-mediated stromal fibroblast recruitment for tumorigenesis. EMBO J 23:2800–2810

    Article  PubMed  CAS  Google Scholar 

  19. MacDonald TJ, Brown KM, LaFleur B et al (2001) Expression profiling of medulloblastoma: PDGFA and the RAS/MAPK pathway as therapeutic targets for metastatic disease. Nat Genet 29:143–152

    Article  PubMed  CAS  Google Scholar 

  20. Aas PA, Otterlei M, Falnes PO et al (2003) Human and bacterial oxidative demethylases repair alkylation damage in both RNA and DNA. Nature 421:859–863

    Article  PubMed  CAS  Google Scholar 

  21. Lee DH, Kin SG, Gai S et al (2005) Repair of methylation damage in DNA and RNA by mammalian AlkB homologues. J Biol Chem 280:39448–39459

    Article  PubMed  CAS  Google Scholar 

  22. Yagi T, Baroja-Fernandez E, Yamamoto R et al (2003) Cloning, expression and characterization of a mammalian Nudix hydrolase-like enzyme that cleaves the pyrophosphate bond of UDP-glucose. Biochem 370:409–415

    Article  CAS  Google Scholar 

  23. Roach CJ (2002) Glycogen and its metabolism. Curr Mol Med 2:101–120

    Article  PubMed  CAS  Google Scholar 

  24. Heyen CA, Tagliabracci VS, Zhai L et al (2009) Characterization of mouse UDP-glucose pyrophosphatase, a Nudix hydrolase encoded by the Nuct14 gene. Biochem Biophys Res Commun 390:1414–1418

    Article  PubMed  CAS  Google Scholar 

  25. Gimona M, Mital R (1998) The single CH domain of calponin is neither sufficient nor necessary for F-actin binding. J Cell Sci 111:1813–1821

    PubMed  CAS  Google Scholar 

  26. Tang J, Hu G, Hanai JI et al (2006) A critical role for calponin 2 in vascular development. J Biol Chem 281:6664–6672

    Article  PubMed  CAS  Google Scholar 

  27. Dang C, Gottschling M, Manning K et al (2006) Identification of dysregulated genes in cutaneous squamous cell carcinoma. Oncol Rep 16:513–519

    PubMed  CAS  Google Scholar 

  28. Frasch SC, Nick JA, Fadok VA et al (1998) p38 mitogen-activated protein kinase-dependent and–independent intracellular signal transduction pathways leading to apoptosis in human neutrophils. J Biol Chem 273:8389–8397

    Article  PubMed  CAS  Google Scholar 

  29. Hui L, Bakiri L, Mairhorfer A et al (2007) p38 suppresses normal and cancer cell proliferation by antagonizing the JNK-c-Jun pathway. Nat Genet 39:741–749

    Article  PubMed  CAS  Google Scholar 

  30. Aguirre-Ghiso JA, Ossowski L, Rosenbaum SK (2004) Green fluorescent protein tagging of extracellular signal-regulated kinase and p38 patnways reveals novel dynamics of pathway activation during primary and metastatic growth. Cancer Res 64:7336–7345

    Article  PubMed  CAS  Google Scholar 

  31. Puri PL, Wu Z, Zhang P et al (2000) Induction of terminal differentiation by constitutive activation of p38 MAP kinase in human rhabdomyosarcoma cells. Genes Dev 14:574–584

    PubMed  CAS  Google Scholar 

  32. Singh KK, Desouki MM, Franklin RB et al (2006) Mitochondrial aconitase and citrate metabolism in malignant and nonmalignant human prostate tissues. Mol Cancer 5:14–21

    Article  PubMed  Google Scholar 

  33. Wang KT, Wang J, Li LF et al (2009) Crystal structures of catalytic intermediates of human selenophosphate synthetase 1. J Mol Biol 390:747–759

    Article  PubMed  CAS  Google Scholar 

  34. Chung HJ, Yoon SI, Shin SH et al (2006) p53-mediated enhancement of radiosensitivity by selenophosphate synthetase 1 overexpression. J Cell Physiol 209:131–141

    Article  PubMed  CAS  Google Scholar 

  35. Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61:759–767

    Article  PubMed  CAS  Google Scholar 

  36. Samowitz WS, Slattery ML, Sweeney C et al (2007) APC mutations and other genetic and epigenetic changes in colon cancer. Mol Cancer Res 5:165–170

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to So-young Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, Sy., Jang, J.H. & Kim, K.R. Analysis of differentially expressed genes in human rectal carcinoma using suppression subtractive hybridization. Clin Exp Med 11, 219–226 (2011). https://doi.org/10.1007/s10238-010-0130-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-010-0130-5

Keywords

Navigation