Skip to main content

Advertisement

Log in

In vitro and in vivo study of human amniotic fluid-derived stem cell differentiation into myogenic lineage

  • Original Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Recent findings have shown that amniotic fluid (AF) could be a putative new source of multipotent stem cells (SC). We investigated whether these human SC could efficiently differentiate into myogenic lineage in vitro and integrate in vivo skeletal muscle in severe combined immunodeficiency (SCID) mice. C/kit immunomagnetic-sorted AF (AF c/kit+) SC were characterized by immunocytochemistry and Southern blotting for myogenic markers (desmin, MyoD). In vitro, AF c/kit+ SC phenotypic conversion into myogenic cells was assayed by myogenic-specific induction media. AF c/kit+ SC without ex vivo manipulation were transplanted into the tibialis anterior (TA) of (SCID) mice. Acquisition of a myogenic-like phenotype (desmin, MyoD) in AF c/kit+ SC was observed after culture in myogenic-specific induction media. In vivo, transplanted AF c/kit+ SC showed an engraftment in the skeletal muscle of SCID mice, but with unexpected tubular glandular tissue-like differentiation. Importantly, no immuno-rejection, inflammatory response or tumorigenicity of these cells was found. Within these experimental conditions, AF c/kit+ SC were able to differentiate into myogenic cells in vitro, but not in vivo after their transplantation into the skeletal muscle of SCID mice. Because AF c/kit+ SC survived and differentiated into tubular gland-like cells after their transplantation in the TA, an ex vivo engagement in myogenic pathway prior their transplantation could favor their differentiation into myogenic cells in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sartore S, Lenzi M, Angelini A, Chiavegato A, Gasparotto L, De Coppi P et al (2005) Amniotic mesenchymal cells autotransplanted in a porcine model of cardiac ischemia do not differentiate to cardiogenic phenotypes. Eur J Cardiothorac Surg 28(5):677–684

    Article  PubMed  Google Scholar 

  2. Atala A (2006) Recent developments in tissue engineering and regenerative medicine. Curr Opin Pediatr 18(2):167–171

    Article  PubMed  Google Scholar 

  3. Dai W, Hale SL, Kloner RA (2005) Stem cell transplantation for the treatment of myocardial infarction. Transpl Immunol 15(2):91–97

    Article  CAS  PubMed  Google Scholar 

  4. De Coppi P, Bartsch G Jr, Siddiqui MM, Xu T, Santos CC, Perin L et al (2007) Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 25(1):100–106

    Article  PubMed  Google Scholar 

  5. Hipp J, Atala A (2008) Sources of stem cells for regenerative medicine. Stem Cell Rev 4(1):3–11

    Article  PubMed  Google Scholar 

  6. Waese EY, Kandel RR, Stanford WL (2008) Application of stem cells in bone repair. Skeletal Radiol 37(7):601–608

    Article  PubMed  Google Scholar 

  7. Kim J, Lee Y, Kim H, Hwang KJ, Kwon HC, Kim SK et al (2007) Human amniotic fluid-derived stem cells have characteristics of multipotent stem cells. Cell Prolif 40(1):75–90

    Article  CAS  PubMed  Google Scholar 

  8. Segers VF, Lee RT (2008) Stem-cell therapy for cardiac disease. Nature 451(7181):937–942

    Article  CAS  PubMed  Google Scholar 

  9. In’t Anker PS, Scherjon SA, Kleijburg-van der Keur C, Noort WA, Claas FH, Willemze R et al (2003) Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood 102(4):1548–1549

    Article  Google Scholar 

  10. Pan GJ, Chang ZY, Scholer HR, Pei D (2002) Stem cell pluripotency and transcription factor Oct4. Cell Res 12(5–6):321–329

    Article  PubMed  Google Scholar 

  11. Pesce M, Scholer HR (2001) Oct-4: gatekeeper in the beginnings of mammalian development. Stem Cells 19(4):271–278

    Article  CAS  PubMed  Google Scholar 

  12. Chiavegato A, Bollini S, Pozzobon M, Callegari A, Gasparotto L, Taiani J et al (2007) Human amniotic fluid-derived stem cells are rejected after transplantation in the myocardium of normal, ischemic, immuno-suppressed or immuno-deficient rat. J Mol Cell Cardiol 42(4):746–759

    Article  CAS  PubMed  Google Scholar 

  13. Zsebo KM, Williams DA, Geissler EN, Broudy VC, Martin FH, Atkins HL et al (1990) Stem cell factor is encoded at the Sl locus of the mouse and is the ligand for the c-kit tyrosine kinase receptor. Cell 63(1):213–224

    Article  CAS  PubMed  Google Scholar 

  14. Delo DM, De Coppi P, Bartsch G Jr, Atala A (2006) Amniotic fluid and placental stem cells. Methods Enzymol 419:426–438

    Article  CAS  PubMed  Google Scholar 

  15. Parolini O, Alviano F, Bagnara GP, Bilic G, Buuhring HJ, Evangelista M et al (2008) Concise review: isolation and characterization of cells from human term placenta: outcome of the first international Workshop on Placenta Derived Stem Cells. Stem Cells 26(2):300–311

    Article  PubMed  Google Scholar 

  16. Tsai MS, Hwang SM, Tsai YL, Cheng FC, Lee JL, Chang YJ (2006) Clonal amniotic fluid-derived stem cells express characteristics of both mesenchymal and neural stem cells. Biol Reprod 74(3):545–551

    Article  CAS  PubMed  Google Scholar 

  17. Harris RA, Washington AE, Nease RF Jr, Kuppermann M (2004) Cost utility of prenatal diagnosis and the risk-based threshold. Lancet 363(9405):276–282

    Article  PubMed  Google Scholar 

  18. Mann K, Donaghue C, Fox SP, Docherty Z, Ogilvie CM (2004) Strategies for the rapid prenatal diagnosis of chromosome aneuploidy. Eur J Hum Genet 12(11):907–915

    Article  CAS  PubMed  Google Scholar 

  19. Régie de l'Assurance Maladie du Québec RdlamdQ (2003) Nombres d’amniocentèses pratiquées annuellement dans la province de Québec. Québec (Canada)

  20. Miki T, Lehmann T, Cai H, Stolz DB, Strom SC (2005) Stem cell characteristics of amniotic epithelial cells. Stem Cells 23(10):1549–1559

    Article  CAS  PubMed  Google Scholar 

  21. Reubinoff BE, Pera MF, Fong CY, Trounson A, Bongso A (2000) Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol 18(4):399–404

    Article  CAS  PubMed  Google Scholar 

  22. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

    Article  CAS  PubMed  Google Scholar 

  23. De Coppi P, Callegari A, Chiavegato A, Gasparotto L, Piccoli M, Taiani J et al (2007) Amniotic fluid and bone marrow-derived mesenchymal stem cells can be converted to smooth muscle cells in the cryo-injured rat bladder and prevent compensatory hypertrophy of surviving smooth muscle cells. J Urol 177(1):369–376

    Article  PubMed  Google Scholar 

  24. Quenneville SP, Chapdelaine P, Skuk D, Paradis M, Goulet M, Rousseau J et al (2007) Autologous transplantation of muscle precursor cells modified with a lentivirus for muscular dystrophy: human cells and primate models. Mol Ther 15(2):431–438

    Article  CAS  PubMed  Google Scholar 

  25. Walther G, Bertrand O, Gekas J (2009) Amniotic stem cells for cellular cardiomyoplasty: promises and premises. Catheter Cardiovasc Interv 73:917–924

    Article  PubMed  Google Scholar 

  26. Zhao P, Ise H, Hongo M, Ota M, Konishi I, Nikaido T (2005) Human amniotic mesenchymal cells have some characteristics of cardiomyocytes. Transplantation 79(5):528–535

    Article  PubMed  Google Scholar 

  27. Andres V, Walsh K (1996) Myogenin expression, cell cycle withdrawal, and phenotypic differentiation are temporally separable events that precede cell fusion upon myogenesis. J Cell Biol 132(4):657–666

    Article  CAS  PubMed  Google Scholar 

  28. Bober E, Lyons GE, Braun T, Cossu G, Buckingham M, Arnold HH (1991) The muscle-regulatory gene, Myf-6, has a biphasic pattern of expression during early mouse development. J Cell Biol 113(6):1255–1265

    Article  CAS  PubMed  Google Scholar 

  29. Dezawa M, Ishikawa H, Itokazu Y, Yoshihara T, Hoshino M, Takeda S et al (2005) Bone marrow stromal cells generate muscle cells and repair muscle degeneration. Science 309(5732):314–317

    Article  CAS  PubMed  Google Scholar 

  30. Challier JC, Galtier M, Cortez A, Bintein T, Rabreau M, Uzan S (2005) Immunocytological evidence for hematopoiesis in the early human placenta. Placenta 26(4):282–288

    Article  CAS  PubMed  Google Scholar 

  31. Ditadi A, de Coppi P, Picone O, Gautreau L, Smati R, Six E et al (2009) Human and murine amniotic fluid c-Kit+ Lin− cells display hematopoietic activity. Blood 113(17):3953–3960

    Article  CAS  PubMed  Google Scholar 

  32. Cascalho M, Ogle BM, Platt JL (2006) The future of organ transplantation. Ann Transplant 11(2):44–47

    PubMed  Google Scholar 

  33. Fujii I, Matsukura M, Ikezawa M, Suzuki S, Shimada T, Miike T (2006) Adenoviral-mediated MyoD gene transfer into fibroblasts: myogenic disease diagnosis. Brain Dev 28(7):420–425

    Article  PubMed  Google Scholar 

  34. Tsai MS, Lee JL, Chang YJ, Hwang SM (2004) Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol. Hum Reprod 19(6):1450–1456

    Article  PubMed  Google Scholar 

  35. D’Ippolito G, Diabira S, Howard GA, Menei P, Roos BA, Schiller PC (2004) Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. J Cell Sci 117(Pt 14):2971–2981

    Article  PubMed  Google Scholar 

  36. Stenderup K, Justesen J, Clausen C, Kassem M (2003) Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone 33(6):919–926

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to J. Puymirat, MD, PhD, for his support in this ongoing multidisciplinary project. We also thank J. Leroy for his excellent technical assistance. G. Walther was supported with a post-doctoral grant from Quebec Foundation for Health Research. O.F. Bertrand is a research scholar from Quebec Foundation for Health Research.

Conflict of interest statement

The authors declare that they have no conflict of interest related to the publication of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier François Bertrand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gekas, J., Walther, G., Skuk, D. et al. In vitro and in vivo study of human amniotic fluid-derived stem cell differentiation into myogenic lineage. Clin Exp Med 10, 1–6 (2010). https://doi.org/10.1007/s10238-009-0060-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-009-0060-2

Keywords

Navigation