Skip to main content
Log in

A hybrid computational model for collective cell durotaxis

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Collective cell migration is regulated by a complex set of mechanical interactions and cellular mechanisms. Collective migration emerges from mechanisms occurring at single cell level, involving processes like contraction, polymerization and depolymerization, of cell–cell interactions and of cell–substrate adhesion. Here, we present a computational framework which simulates the dynamics of this emergent behavior conditioned by substrates with stiffness gradients. The computational model reproduces the cell’s ability to move toward the stiffer part of the substrate, process known as durotaxis. It combines the continuous formulation of truss elements and a particle-based approach to simulate the dynamics of cell–matrix adhesions and cell–cell interactions. Using this hybrid approach, researchers can quickly create a quantitative model to understand the regulatory role of different mechanical conditions on the dynamics of collective cell migration. Our model shows that durotaxis occurs due to the ability of cells to deform the substrate more in the part of lower stiffness than in the stiffer part. This effect explains why cell collective movement is more effective than single cell movement in stiffness gradient conditions. In addition, we numerically evaluate how gradient stiffness properties, cell monolayer size and force transmission between cells and extracellular matrix are crucial in regulating durotaxis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

Download references

Acknowledgements

This work is supported by the Spanish Ministry of Economy and Competitiveness/FEDER (FPI BES-2013- 063684 to J.E., DPI201564221C21R to J.M.G.-A., BFU2016-79916-P and BFU2014-52586-REDT to PR-C, BFU2015-65074-P to XT), the Generalitat de Catalunya (2014-SGR-927 to XT and CERCA program), the European Research Council (StG 306571 to J.M.G.-A. and CoG-616480 to XT), European Commission (Grant Agreement SEP-210342844 to PR-C and XT). IBEC is recipient of a Severo Ochoa Award of Excellence from the MINECO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Manuel García-Aznar.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Escribano, J., Sunyer, R., Sánchez, M.T. et al. A hybrid computational model for collective cell durotaxis. Biomech Model Mechanobiol 17, 1037–1052 (2018). https://doi.org/10.1007/s10237-018-1010-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-018-1010-2

Keywords

Navigation