Skip to main content
Log in

Modelling and numerical simulation of the human aortic arch under in vivo conditions

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

This work presents the modelling and simulation of the mechanical behaviour of the human aortic arch under in vivo conditions with pressure levels within the normal and hypertension physiological range. The cases studied correspond to young and aged arteries without cardiovascular pathologies. First, the tissue of these two groups is characterised via in vitro tensile test measurements that make it possible to derive the material parameters of a hyperelastic isotropic constitutive model. Then, these material parameters are used in the simulation of young and aged aortic arches subjected to in vivo normal and hypertension conditions. Overall, the numerical results were found not only to provide a realistic description of the mechanical behaviour of the vessel but also to be useful data that allow the adequate definition of stress/stretch-based criteria to predict its failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Al-Okaili R, Schwartz ED (2007) Bilateral aortic origins of the vertebral arteries with right vertebral artery arising distal to left subclavian artery: case report. Surg Neurol 67:174–176

    Article  Google Scholar 

  • Beller CJ, Labrosse MR, Thubrikar MJ, Robicsek F (2004) Role of aortic root motion in the pathogenesis of aortic dissection. Circulation 109:763–769

    Article  Google Scholar 

  • Beller CJ, Labrosse MR, Thubrikar MJ, Szabo G, Robicsek F, Hagl S (2005) Increased aortic wall stress in aortic insufficiency: clinical data and computer model. Eur J Cardiothorac Surg 27:270–275

    Article  Google Scholar 

  • Braverman A, Thomson R, Sanchez L (2010) Braunwald’s heart disease (Chapter 60: Diseases of the aorta), 9th edn. Elsevier, Philadelphia

    Google Scholar 

  • Celentano D (2001) A large strain thermoviscoplastic formulation for the solidification of S.G. cast iron in a green sand mould. Int J Plast 17:1623–1658

    Article  MATH  Google Scholar 

  • Chiesa R, Moura M, Lucci C, Castellano R, Civilini E, Melissano G, Tshomba Y (2003) Blunt trauma to the thoracic aorta: mechanisms involved, diagnosis and management. J Vasc Bras 2(3):197–209

    Google Scholar 

  • Chuong CJ, Fung YC (1986) On residual stresses in arteries. ASME J Biomech Eng 108:189–192

    Article  Google Scholar 

  • De Caro E, Trocchio G, Smeraldi A, Calevo MG, Pongiglione G (2007) Aortic arch geometry and exercise-induced hypertension in aortic coarctation. Am J Cardiol 99:1284–1287

    Article  Google Scholar 

  • Delfino A, Stergiopulos N, Moore J, Meister J (1997) Residual strain effects on the stress field in a thick wall finite element model of the human carotid bifurcation. J Biomech 30:777–786

    Article  Google Scholar 

  • Demiray H (1972) On the elasticity of soft biological tissues. J Biomech 5:309–311

    Article  Google Scholar 

  • Di Martino ES, Vorp DA (2003) Effect of variation in intraluminal thrombus constitutive properties on abdominal aortic aneurysm wall stress. Ann Biomed Eng 31:804–809

    Article  Google Scholar 

  • Doyle BJ, Cloonan AJ, Walsh MT, Vorp DA, McGloughlin TM (2010) Identification of rupture locations in patient-specific abdominal aortic aneurysms using experimental and computational techniques. J Biomech 43:1408–1406

    Article  Google Scholar 

  • Doyle BJ, Killion J, Callanan A (2012) Use of the photoelastic method and finite element analysis in the assessment of wall strain in abdominal aortic aneurysm models. J Biomech 45:1759–1768

    Article  Google Scholar 

  • Erbel R, Eggebrecht H (2006) Aortic dimensions and the risk of dissection. Heart 92:137–142

    Article  Google Scholar 

  • Ergin MA, Spielvogel D, Apaydin A, Lansman SL, McCullough JN, Galla JD, Griepp RD (1999) Surgical treatment of the dilated ascending aorta: when and how? Ann Thorac Surg 67:1834–1839

    Article  Google Scholar 

  • Field M, Richens D (2006) Anticipatory valsalva-type response as a contributory factor in low impact blunt traumatic aortic rupture. Med Hypotheses 67:87–92

    Article  Google Scholar 

  • Field M, Sastry P, Zhao A, Richens D (2007) Small vessel avulsion and acute aortic syndrome: a putative aetiology for initiation and propagation of blunt traumatic aortic injury at the isthmus. Med Hypotheses 68:1392–1398

    Article  Google Scholar 

  • Fung Y (1993) Biomechanics. Mechanical properties of living tissues. Springer, New York

    Google Scholar 

  • Gao F, Watanabe M, Matusuzawa T (2006) Stress analysis in a layered aortic arch model under pulsatile blood flow. Biomed Eng Online 5:25

    Article  Google Scholar 

  • García-Herrera CM, Celentano DJ, Cruchaga MA, Rojo FJ, Atienza JM, Guinea GV, Goicolea JM (2012a) Mechanical characterisation of the human thoracic descending aorta: experiments and modelling. Comput Methods Biomech Biomed Eng 15:185–193

    Google Scholar 

  • García-Herrera CM, Celentano DJ, Cruchaga MA (2012b) Bending and pressurisation test of the human aoritc arch: experiments, modelling and simulation of a patient-specific case. Comput Methods Biomech Biomed Eng (in press)

  • Goicolea J, Atienza JM, Burgos R, García-Touchard A, Goicolea J, Guinea G, Mingo S, Montero C, Salas C (2006) Biomecánica aórtica y su correlación in vivo, estudio del comportamiento mecánico y de la rotura de aorta y su correlación ecocardiográfica, histológica y molecular. Protocolo de extracción de muestras. Hospital Universitario Puerta de Hierro, Madrid

    Google Scholar 

  • Govindjee S, Mihalic PA (1996) Computational methods for inverse finite elastostatics. Comput Methods Appl Mech Eng 136:47–57

    Article  MATH  Google Scholar 

  • Holzapfel GA (2000) Non linear solid mechanics. Wiley, West Sussex

    Google Scholar 

  • Hariton I, deBotton G, Gasser TC, Holzapfel GA (2007) Stress-modulated collagen fiber remodeling in a human carotid bifurcation. J Theor Biol 248:460–470

    Article  MathSciNet  Google Scholar 

  • Holzapfel GA, Sommer G, Auer M, Regitnig P, Ogden RW (2007) Layer-specific 3D residual deformations of human aortas with non-atherosclerotic intimal thickening. Ann Biomed Eng 35:530–545

    Google Scholar 

  • Koullias G, Modak R, Tranquilli M (2005) Mechanical deterioration underlies malignant behavior of aneurysmal human ascending aorta. J Thorac Cardiovasc Surg 130:677.e1–677.e9

    Article  Google Scholar 

  • Laurent S, Cockcroft J, Bortel LV, Boutouyrie P, Giannattasio C, Hayoz D, Pannier B, Vlachopoulos C, Wilkinson I, Struijker-Boudier H (2006) Expert consensus document on arterial stiffness: methodological issued and clinical applications. Eur Heart J 27:2588–2605

    Google Scholar 

  • Li Z, Kleinstreuer C (2005) A new wall stress equation for aneurysm-rupture prediction. Ann Biomed Eng 33:209–213

    Article  Google Scholar 

  • Liu CY, Chen D, Teixido-Tura G, Chugh AR, Redheuil A, Gomes AS, Prince MR, Hundley W, Bluemke DA, Lima JA (2012) Aortic size, distensibility, and pulse wave velocity changes with aging: longitudinal analysis from Multi-Ethnic Study of Atherosclerosis (MESA). J Cardiovasc Magn Reson 14:126–127

    Article  Google Scholar 

  • Lonescu I, Guilkey JE, Berzins M, Kirby RM, Weiss JA (2006) Simulation of soft tissue failure using the material point method. J Biomech Eng 128:917–924

    Article  Google Scholar 

  • Lu J, Zhou X, Raghavan ML (2007) Inverse elastostatic stress analysis in pre-deformed biological structures: demostration using abdominal aortic aneurysms. J Biomech 40:693–696

    Article  Google Scholar 

  • McGillicuddy D, Rosen P (2007) Diagnostic dilemmas and current controversies in blunt chest trauma. Emerg Med Clin N Am 25:695–711

    Article  Google Scholar 

  • Medina F, Wicker RB (2003) Geometric modeling of the human aorta for rapid prototyping using patient data and commercial software packages. Summer bioengineering conference, Florida, USA

  • Mohan D, Melvin J (1982) Failure properties of passive human aortic tissue. I uniaxial tension test. J Biomech 15(11):887–902

    Article  Google Scholar 

  • Nichols W, Rourke MO (1990) McDonald’s flow in arteries theoretical, experimental and clinical principles, 3rd edn. Oxford University, New York

    Google Scholar 

  • Ogden RW (1984) Non-linear elastic deformations. Dover, New York

    Google Scholar 

  • Oijen CV (2003) Mechanics and design of fiber-reinforced vascular prostheses. Ph.D. thesis, Technische Universiteit Eindhoiven

  • Okamoto RJ, Wagenseil JE, DeLong WR, Peterson SJ, Kouchoukos NT, Sundt TM III (2002) Mechanical properties of dilated human ascending aorta. Ann Biomed Eng 30:624–635

    Google Scholar 

  • Pape LA, Tsai TT, Isselbacher EM, Oh JK, O’Gara PT, Evangelista A, Fattori R, Meinhardt G, Trimarchi S, Bossone E, Suzuki T, Cooper JV, Froehlich JB, Nienaber CA, Eagle KA (2007) Aortic diameter \(\ge \)5.5 cm is not a good predictor of type A aortic dissection. Observations from the international registry of acute aortic dissection (IRAD). Circulation 116:1120–1127

    Google Scholar 

  • Pasic M, Ewert R, Engel M, Franz N, Bergs P, Kuppe H, Hetzer R (2000) Aortic rupture and concomitant transection of the left bronchus after blunt chest trauma. Chest 117:1508–1510

    Article  Google Scholar 

  • Putz R, Pabst R, Weiglein A (2001) Sobotta atlas of human anatomic atlas, vol 2. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Richens D, Field M, Neale M, Oakley C (2002) The mechanism of injury in blunt traumatic rupture of the aorta. Eur J Cardiothorac Surg 21:288–293

    Article  Google Scholar 

  • Richens D, Field M, Hashim S, Neale M, Oakley C (2004) A finite element model of blunt traumatic aortic rupture. Eur J Cardiothorac Surg 25:1039–1047

    Article  Google Scholar 

  • Rose JL, Lalande A, Bouchot O, Bourennane EB, Walker PM, Ugolini P, Revol-Muller C, Cartier R, Brunotte F (2010) Influence of age and sex on aortic distensibility assessed by MRI in healthy subjects. Magn Reson Imaging 28:255–263

    Google Scholar 

  • Sanmartín M, Goicolea J, García C, García J, Crespo A, Rodríguez J, Goicolea JM (2006) Influencia de la tensión de cizallamiento en la reestenosis intra-stent: Estudio in vivo con reconstrucción 3D y dinámica de fluidos computacional. Rev Española Cardiol 59(1): 20–27

    Google Scholar 

  • Vorp DA (2007) Biomechanics of abdominal aortic aneurysm. J Biomech 40:1887–1902

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to express their appreciation to Dr. R. Burgos and C. García-Montero of the Hospital de Puerta de Hierro in Madrid for providing the arterial tissues analysed in this work. The support provided by the FONDECYT Project No. 11090266 of the Chilean Council of Research and Technology (CONICYT) is gratefully acknowledged. Conflict of interest The authors have no conflicting interests associated with this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio M. García-Herrera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García-Herrera, C.M., Celentano, D.J. Modelling and numerical simulation of the human aortic arch under in vivo conditions. Biomech Model Mechanobiol 12, 1143–1154 (2013). https://doi.org/10.1007/s10237-013-0471-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-013-0471-6

Keywords

Navigation