Skip to main content
Log in

The role of viscoelasticity and stress gradients on the outcome of conductive keratoplasty

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

A mechanical analysis of the conductive keratoplasty on hyperopic eyes has been carried out, and the attention has been focused on incorporating the actual viscoelastic properties of the human corneal tissue and on the stress gradients induced by the intervention. By avoiding unnecessary complications which may obscure the essential behaviour of the model, the results are in very good agreement with the clinical and experimental findings and suggest that the major role in the commonly observed decrease of the initial degree of the refractive correction might be played by the stress gradients at the intervention spots, which are likely to influence the wound-healing. The study aims to contribute some firm mechanical roots to the predictability of the outcome of an increasingly popular technique that, notwithstanding several advantages with respect to ablative interventions, at present cannot be considered completely satisfactory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson K, Elsheikh A, Newson T (2004) Application of structural analysis to the mechanical behaviour of the cornea. J R Soc Interface 1: 3–15

    Article  Google Scholar 

  • ANSYS 10.0 User’s Manual (2009) ANSYS, Inc. Canonsburg, PA 15317, USA

  • Boote C, Dennis S, Huang Y, Quantock AJ, Meek KM (2005) Lamellar orientation in human cornea in relation to mechanical properties. J Struct Biol 149: 1–6

    Article  Google Scholar 

  • Brinkmann R, Radt B, Flamm C, Kampmeier J, Koop N, Birngruber R (2000) Influence of temperature and time on thermally induced forces in corneal collagen and the effect on laser thermokeratoplasty. J Cataract Refract Surg 26: 744–754

    Article  Google Scholar 

  • Bryant M, McDonnell P (1996) Constitutive laws for biomechanical modeling of refractive surgery. J Biomech Eng 118: 473–481

    Article  Google Scholar 

  • Chen T (2000) Determining a Prony Series for a Viscoelastic Material From Time Varying Strain Data. NASA/TM-2000-210123: ARL-TR-2206

  • Cowin SC, Doty SB (2007) Tissue mechanics. Springer, Berlin

    Book  MATH  Google Scholar 

  • Elsheikh A, Wang D, Kotecha A, Brown M, Garway-Heath D (2006) Evaluation of Goldmann applanation tonometry using a nonlinear finite element ocular model. Ann Biomed Eng 34(10): 1628–1640

    Article  Google Scholar 

  • Elsheikh A, Alhasso D, Rama P (2008a) Biomechanical properties of human and porcine corneas. Exp Eye Res 86: 783–790

    Article  Google Scholar 

  • Elsheikh A, Brown M, Alhasso D, Rama P, Campanelli M, Garway-Heath D (2008b) Experimental assessment of corneal anisotropy. J Refract Surg 24: 2

    Google Scholar 

  • Esquenazi S, He J, Kim DB, Bazan NG, Bui V, Bazan EP (2006) Wound-healing response and refractive regression after conductive keratoplasty. J Cataract Refract Surg 32: 480–486

    Article  Google Scholar 

  • Fernández DC, Niazy AM, Kurtz RM, Djotyan GP, Juhasz T (2006) A finite element model for ultrafast laser–lamellar keratoplasty. Ann Biomed Eng 34(1): 169–183

    Article  Google Scholar 

  • Fung YC (1993) Biomechanics: mechanical properties of living tissues 2. Springer, New York Inc

    Google Scholar 

  • Gefen A, Shalom R, Elad D, Mandel Y (2008) Biomechanical analysis of the keratoconic cornea. Mech Behav Biomed Mater 2: 224–236

    Article  Google Scholar 

  • Grytz R, Meschke G (2009a) A computational remodeling approach to predict the physiological architecture of the collagen fibril network in corneo-scleral shells. Biomech Model Mechanobiol. doi:10.1007/s10237-009-0173-2

  • Grytz R, Meschke G (2009b) Constitutive modeling of crimped collagen fibrils in soft tissues. J Mech Behav Biomed Mater 2: 522–533

    Article  Google Scholar 

  • Hersh PS (2005) Optics of conductive keratoplasty: implications for presbyopia management. Trans Am Ophthalmol Soc 103: 412–456

    Google Scholar 

  • Hoeltzel DA, Altman P, Buzard K, Choe K (1992) Strip extensiometry for comparison of the mechanical response of bovine, rabbit, and human corneas. J Biomech Eng 114: 202–215

    Article  Google Scholar 

  • Kokott W (1938) Uber mechanisch-funktionelle Strukturen des Auges. Albrecht Graefes Arch Ophthalmol 118: 424–485

    Article  Google Scholar 

  • Lanchares E, Calvo B, Cristòbal JA, Doblare M (2008) Finite element simulation of arcuates for astigmatism correction. J Biomech 41: 797–805

    Article  Google Scholar 

  • Li L, Tighe B (2006) The anisotropic material constitutive models for the human cornea. J Struct Biol 153: 223–230

    Article  Google Scholar 

  • McDonald MB (2005) Conductive keratoplasty: a radiofrequency-based technique for the correction of hyperopia. Trans Am Ophthalmol Soc 103: 512–536

    Google Scholar 

  • McDonald MB, Hersh PS, Manche EE, Maloney RK, Davidorf J, Sabry M (2002) Conductive keratoplasty for the correction of low to moderate hyperopia: US clinical trial 1-Year results on 355 eyes. Ophtalmology 109: 1978–1989

    Article  Google Scholar 

  • Meek KM, Boote C (2009) The use of X-ray scattering techniques to quantify the orientation and distribution of collagen in the corneal stroma. Prog Retin Eye Res 28: 369–392

    Article  Google Scholar 

  • Meek KM, Blamires T, Elliot GF, Gyi TJ, Nave C (1987) The organisation of collagen fibrils in the human corneal stroma: a synchrotron x-ray diffraction study. Curr Eye Res 6: 84l–846

    Article  Google Scholar 

  • Munnerlyn C, Koons SJ, Marshall J (1988) Photorefractive keratectomy: a technique for laser refractive surgery. J Cataract Refract Surg 14: 46–52

    Google Scholar 

  • Naoumidi TL, Pallikaris IG, Naoumidi I, Astyrakakis Ni. (2005) Conductive keratoplasty: histological study of human corneas. Am J Ophthalmol 140: 984–992

    Article  Google Scholar 

  • Newton RH, Meek KM (1998) Circumcorneal annulus of collagen fibrils in the human limbus. Invest Ophthalmol Vis Sci 39: 1125–1134

    Google Scholar 

  • Nguyen TD, Jones RE, Boyce BL (2008) A nonlinear anisotropic viscoelastic model for the tensile behavior of the corneal stroma. J Biomech Eng 130(4): 041020

    Article  Google Scholar 

  • Pandolfi A, Manganiello F (2006) A model for the human cornea: constitutive formulation and numerical analysis. Biomech Model Mechanobiol 5: 237–246

    Article  Google Scholar 

  • Pandolfi A, Holzapfel GA (2008) Three-dimensional modeling and computational analysis of the human cornea considering distributed collagen fibril orientation. J Biomech Eng 130(6): 061006

    Article  Google Scholar 

  • Pandolfi A, Fotia G, Manganiello F (2009) Finite element simulations of laser refractive corneal surgery. Eng Comput 25: 15–24

    Article  Google Scholar 

  • Pinsky P, Datye V (1991) A microstructurally-based finite element model of the incised human cornea. J Biomech Eng 10: 907–922

    Google Scholar 

  • Pinsky PM, Vander Heide D, Chernyak D (2005) Computational modeling of mechanical anisotropy in the cornea and sclera. J Cataract Refract Surg 31: 136–145

    Article  Google Scholar 

  • Rutkowski JM, Swartz MA (2007) A driving force for change: interstitial flow as a morphoregulator. Trends Cell Biol 17(1): 44–50

    Article  Google Scholar 

  • Uchio E, Ohno S, Kudoh J, Aoki K, Kisielewicz LT (1999) Simulation model of an eyeball based on finite element analysis on a supercomputer. Br J Ophthalmol 83: 1106–1111

    Article  Google Scholar 

  • Wall MS, Deng X, Torzilli PA, Doty SB, O’Brien SJ, Warren RF (1999) Thermal modification of collagen. J Shoulder Elbow Surg 8: 339–344

    Article  Google Scholar 

  • Wang X, Zhang J, Liu A, Zeng Y, Yuhua P (2007) Effect of different corneal curvature on corrected power of conductive keratoplasty. Proceedings 2007 IEEE/ICME. ISBN:1-4244-1078-9:1164–1167

  • Wolfram S (2003) The mathematica book. Wolfram Media, Champaign

    Google Scholar 

  • Xie J, Wang B, Ju Y, Wu S (2008) Analytic modeling and simulating of the cornea with finite element method. MIMI 2007: 304–311

    Google Scholar 

  • Zeng Y, Yang J, Huang K, Lee Z, Lee X (2001) A comparison of biomechanical properties between human and porcine cornea. J Biomech 34: 533–537

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Fraldi or F. Guarracino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fraldi, M., Cutolo, A., Esposito, L. et al. The role of viscoelasticity and stress gradients on the outcome of conductive keratoplasty. Biomech Model Mechanobiol 10, 397–412 (2011). https://doi.org/10.1007/s10237-010-0242-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-010-0242-6

Keywords

Navigation