Skip to main content
Log in

Modeling of drug delivery into tissues with a microneedle array using mixture theory

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

In this paper, we apply mixture theory to quantitatively predict the transient behavior of drug delivery by using a microneedle array inserted into tissue. In the framework of mixture theory, biological tissue is treated as a multi-phase fluid saturated porous medium, where the mathematical behavior of the tissue is characterized by the conservation equations of multi-phase models. Drug delivery by microneedle array imposes additional requirements on the simulation procedures, including drug absorption by the blood capillaries and tissue cells, as well as a moving interface along its flowing pathway. The contribution of this paper is to combine mixture theory with the moving mesh methods in modeling the transient behavior of drug delivery into tissue. Numerical simulations are provided to obtain drug concentration distributions into tissues and capillaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Almeida ES, Spilker RL (1998) Finite element formulations for hyperelastic biphasic soft tissues. Comput Methods Appl Mech Eng 151(3–4): 513–538

    Article  MATH  Google Scholar 

  • Atkin RJ, Craine RE (1976) Continuum theories of mixtures: basic theory and historical development. Q J Mech Appl Math 29(2): 209–244

    Article  MATH  MathSciNet  Google Scholar 

  • Brazzle J, Papautsky I, Frazier AB (1999) Micromachined needle arrays for drug delivery or fluid extraction. IEEE Eng Med Biol Mag 18(6): 53–58

    Article  Google Scholar 

  • Chandrasekaran S, Frazier AB (2003) Surface micromachined metallic microneedles. J Microelectromech Syst 12(3): 281–288

    Article  Google Scholar 

  • Chen JK, Wise KD (1994) A multichannel neural probe for selective chemical delivery at the cellular level. Solid State Sensor and Actuator Workshop, pp 256–259

  • Chen JK, Wise KD, Hetke JF et al (1997) A multichannel neural probe for selective chemical delivery at the cellular level. IEEE Trans Biomed Eng 44(8): 760–769

    Article  Google Scholar 

  • Davis S, Prausnitz M, Allen M (2003) Fabrication and characterization of laser micromachined hollow microneedles. In: Proceedings of transducers 03, international conference on solid-state sensors and actuators, pp 1435–1438

  • Davis SP, Landis BJ, Adams ZH et al (2004) Insertion of microneedles into skin: measurement and prediction of insertion force and needle fracture force. J Biomech 37(8): 1155–1163

    Article  Google Scholar 

  • Frauhammer J, Klein H, Eigenberger G, Nowak U (1998) Solving moving boundary problems with an adaptive moving grid method: Rotary heat exchangers with condensation and evaporation. Chem Eng Sci 53(19): 3393–3411

    Article  Google Scholar 

  • Gardeniers H, Berenschot E, De Boer M et al (2002) Silicon micromachined hollow microneedles for transdermal liquid transfer. MEMS 2002, pp 141–144

  • Gardeniers H, Luttge R, Berenschot E et al (2003) A silicon micromachined hollow microneedles for transdermal liquid transport. J Microelectromech Syst 12(6): 855–862

    Article  Google Scholar 

  • Griss P, Stemme G (2002) Novel, side opened out-of-plane microneedles for microfluidic transdermal interfacing. In: International conference on microelectromechanical systems (MEMS’02), pp 467–470

  • Griss P, Stemme G (2003) Side-opened out-of-plane microneedles for microfluidic transdermal liquid transfer. J Microelectromech Syst 12(3): 296–301

    Article  Google Scholar 

  • Henry S, Mcallister DV, Allen MG, Prausnitz MR (1998) Micromachined needles for the transdermal delivery of drugs. In: Proceedings of micro electro mechanical systems workshop (MEMS’98), pp 494–498

  • Holmes MH (1986) Finite deformation of soft tissue: analysis of a mixture model in uni-axial compression. J Biomech Eng 108(4): 372–381

    Article  Google Scholar 

  • Jain RK (1987) Transport of molecules in the tumor interstitium: a review. Cancer Res 47(12): 3039–3501

    Google Scholar 

  • Kaushik S, Hord AH, Denson DD et al (2001) Lack of pain associated with microfabricated microneedles. Anesth Analg 92(2): 502–504

    Article  Google Scholar 

  • Kim K, Park D, Lu H et al (2004) A tapered hollow metallic microneedle array using backside exposure of SU-8. J Micromech Microeng 14(4): 597–603

    Article  Google Scholar 

  • Kuo SC, Chou Y (2004) A novel polymer microneedle arrays and PDMS micromolding technique. Tamkang J Sci Eng 7(2): 95–98

    Google Scholar 

  • Kwan MK, Lai MW, Mow VC (1990) A finite deformation theory for cartilage and other soft hydrated connective tissues I. Equilibrium results. J Biomech 23(2): 145–155

    Article  Google Scholar 

  • Langer R (1998) Drug delivery and targeting. Nature 392(6679 Suppl): 5–10

    Google Scholar 

  • Lian M, Islam N, Wu J (2007) AC electrothermal manipulation of conductive fluids and particles for lab-chip applications. IET Nanobiotechnol 1(3): 36–43

    Article  Google Scholar 

  • Lin LW, Pisano AP, Muller RS (1993) Silicon processed microneedles. In: Technical digest, 7th international conference on solid-state sensors and actuators, transducers, vol 93, pp 237–240

  • Lv YG, Liu J, Gao YH et al (2006) Modeling of transdermal drug delivery with a microneedle array. J Micromech Microeng 16(11): 2492–2501

    Article  Google Scholar 

  • Ma B, Gan Z, Liu S (2005) Flexible silicon microneedles array for micro fluid transfer. In: 6th International conference on electronic packaging technology, pp 561–565

  • Mills N (1966) Incompressible mixtures of Newtonian fluids. Int J Eng Sci 4(2): 97–112

    Article  MATH  Google Scholar 

  • Moon S, Lee S (2005) A novel fabrication method of a microneedle array using inclined deep X-ray exposure. J Micromech Microeng 15(5): 903–911

    Article  Google Scholar 

  • Morf WE, Guenat OT, de Rooij NF (2001) Partial electroosmotic pumping in complex capillary systems Part 1: principles and general theoretical approach. Sens Actuators B 72(3): 266–272

    Article  Google Scholar 

  • Mow VC et al (1980) Biphasic creep and stress relaxation of articular cartilage: theory and experiments. ASME J Biomech Eng 102(1): 73–84

    Article  Google Scholar 

  • Najafi K, Wise KD (1986) An implantable multielectrode array with on-chip signal processing. IEEE J Solid-State Circuits 21(6): 1035–1044

    Article  Google Scholar 

  • Najafi K, Wise KD, Mochizuki T (1985) A high-yield IC-compatible multichannel recording array. IEEE Trans Electron Devices 32(7): 1206–1211

    Article  Google Scholar 

  • Netti PA, Travascio F, Jain RK (2003) Coupled macromolecular transport and gel mechanics: poroviscoelastic approach. AICHE J 49(6): 1580–1596

    Article  Google Scholar 

  • Nicholson C, Phillips JM (1981) Ion diffusion modified by tortuosity and volume fraction in the extracellular environment of rat cerebellum. J Physiol 321: 225–257

    Google Scholar 

  • Nield DA, Bejan A (1992) Convection in porous media. Springer, New York

    Google Scholar 

  • Oomens CW, van Campen DH, Grootenboer HJ (1987) A mixture approach to the mechanics of skin. J Biomech 20(9): 877–885

    Article  Google Scholar 

  • Petzold LR (1987) Observations on an adaptive moving grid method for one-dimensional systems of partial differential equations. Appl Numer Math 3(4): 347–360

    Article  MATH  MathSciNet  Google Scholar 

  • Prausnitz MR (2004) Microneedles for transdermal drug delivery. Adv Drug Deliv Rev 56(5): 581–587

    Article  Google Scholar 

  • Prausnitz MR, Mcallister DV, Kaushik S et al (1999) Microfabricated microneedles for transdermal drug delivery. ASME Bioeng Div 42: 89–90

    Google Scholar 

  • Prausnitz MR, Mitragotri S, Langer R (2004) Current status and future potential of transdermal drug delivery. Nat Rev Drug Discov 3(2): 115–124

    Article  Google Scholar 

  • Reed ML, Lye WK (2004) Microsystems for drug and gene delivery. Proc IEEE 92(1): 56–75

    Article  Google Scholar 

  • Stoeber B, Liepmann D (2005) Arrays of hollow out-of-plane microneedles for drug delivery. J Microelectromech Syst 14(3): 472–479

    Article  Google Scholar 

  • Suh JK, Spilker RL, Holmes MH (1991) A penalty finite element analysis for nonlinear mechanics of biphasic hydrated soft tissue under large deformation. Int J Numer Methods Eng 32(7): 1411–1439

    Article  MATH  Google Scholar 

  • Zahn JD, Deshmukh A, Pisano AP et al (2004) Continuous on-chip micropumping for microneedle enhanced drug delivery. Biomed Microdevices 6(3): 183–190

    Article  Google Scholar 

  • Zhang P, Dalton C, Jullien GA (2009) Design and fabrication of MEMS-badsed microneedle arrays for medical applications. Microsyst Technol 15(7): 1073–1082

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rumi Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, R., Zhang, P., Dalton, C. et al. Modeling of drug delivery into tissues with a microneedle array using mixture theory. Biomech Model Mechanobiol 9, 77–86 (2010). https://doi.org/10.1007/s10237-009-0160-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-009-0160-7

Keywords

Navigation