Skip to main content
Log in

Finite element analysis of microelectrotension of cell membranes

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Electric fields can be focused by micropipette-based electrodes to induce stresses on cell membranes leading to tension and poration. To date, however, these membrane stress distributions have not been quantified. In this study, we determine membrane tension, stress, and strain distributions in the vicinity of a microelectrode using finite element analysis of a multiscale electro-mechanical model of pipette, media, membrane, actin cortex, and cytoplasm. Electric field forces are coupled to membranes using the Maxwell stress tensor and membrane electrocompression theory. Results suggest that micropipette electrodes provide a new non-contact method to deliver physiological stresses directly to membranes in a focused and controlled manner, thus providing the quantitative foundation for micreoelectrotension, a new technique for membrane mechanobiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akinlaja J, Sachs F (1998) The breakdown of cell membranes by electrical and mechanical stress. Biophys J 75:247–254

    Google Scholar 

  • Ashkin A, Dziedzic JM, Yamane T (1987) Optical trapping and manipulation of single cells using infrared laser beams. Nature 330:769–771

    Article  Google Scholar 

  • Bae C, Butler PJ (2006) Automated single-cell electroporation. Biotechniques 41:399–400, 402

    Google Scholar 

  • Bausch AR, Ziemann F, Boulbitch AA, Jacobson K, Sackmann E (1998) Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry. Biophys J 75:2038–2049

    Google Scholar 

  • Charras GT, Williams BA, Sims SM, Horton MA (2004) Estimating the sensitivity of mechanosensitive ion channels to membrane strain and tension. Biophys J 87:2870–2884

    Article  Google Scholar 

  • Crowley JM (1973) Electrical breakdown of biomolecular lipid-membranes as an electromechanical instability. Biophysical J 13:711–724

    Google Scholar 

  • Dai J, Sheetz MP (1999) Membrane tether formation from blebbing cells. Biophys J 77:3363–3370

    Google Scholar 

  • Ermolina I, Polevaya Y, Feldman Y (2000) Analysis of dielectric spectra of eukaryotic cells by computer modeling. Eur Biophys J 29:141–145

    Article  Google Scholar 

  • Evans EA, Waugh R, Melnik L (1976) Elastic area compressibility modulus of red cell membrane. Biophys J 16:585–595

    Google Scholar 

  • Fung YC, Liu SQ (1993) Elementary mechanics of the endothelium of blood vessels. J Biomech Eng 115:1–12

    Article  Google Scholar 

  • Gosse C, Croquette V (2002) Magnetic tweezers: micromanipulation and force measurement at the molecular level. Biophys J 82:3314–3329

    Google Scholar 

  • Helfrich W (1974) Deformation of lipid bilayer spheres by electric fields. Z Naturforsch [C] 29:182–183

    Google Scholar 

  • Isambert H (1998) Understanding the electroporation of cells and artificial bilayer membranes. Phy Rev Lett 80:3404–3407

    Article  Google Scholar 

  • Khine M, Lau A, Ionescu-Zanetti C, Seo J, Lee LP (2005) A single cell electroporation chip. Lab Chip 5:38–43

    Article  Google Scholar 

  • Kinosita K Jr, Ashikawa I, Saita N, Yoshimura H, Itoh H, Nagayama K, Ikegami A (1988) Electroporation of cell membrane visualized under a pulsed-laser fluorescence microscope. Biophys J 53:1015–1019

    Article  Google Scholar 

  • Kinosita K Jr, Tsong TY (1979) Voltage-induced conductance in human erythrocyte membranes. Biochim Biophys Acta 554:479–497

    Article  Google Scholar 

  • Ko YTC, Huang JP, Yu KW (2004) The dielectric behaviour of single-shell spherical cells with a dielectric anisotropy in the shell. J Phys Condensed Matter 16:499–509

    Article  Google Scholar 

  • Kummrow M, Helfrich W (1991) Deformation of giant lipid vesicles by electric fields. Phys Rev A 44:8356–8360

    Article  Google Scholar 

  • Lundqvist JA, Sahlin F, Aberg MA, Stromberg A, Eriksson PS, Orwar O (1998) Altering the biochemical state of individual cultured cells and organelles with ultramicroelectrodes. Proc Natl Acad Sci USA 95:10356–10360

    Article  Google Scholar 

  • Needham D, Hochmuth RM (1989) Electro-mechanical permeabilization of lipid vesicles. Role of membrane tension and compressibility. Biophys J 55:1001–1009

    Google Scholar 

  • Nolkrantz K, Farre C, Brederlau A, Karlsson RI, Brennan C, Eriksson PS, Weber SG, Sandberg M, Orwar O (2001) Electroporation of single cells and tissues with an electrolyte-filled capillary. Anal Chem 73:4469–4477

    Article  Google Scholar 

  • Rae JL, Levis RA (2002) Single-cell electroporation. Pflugers Arch 443:664–670

    Article  Google Scholar 

  • Rand RP, Burton AC (1964) Mechanical properties of red cell membrane. I. Membrane stiffness + intracellular pressure. Biophys J 4:115

    Google Scholar 

  • Riske KA, Dimova R (2005) Electro-deformation and poration of giant vesicles viewed with high temporal resolution. Biophys J 88:1143–1155

    Article  Google Scholar 

  • Riske KA, Dimova R (2006) Electric pulses induce cylindrical deformations on giant vesicles in salt solutions. Biophys J 91:1778–1786

    Article  Google Scholar 

  • Satcher R, Dewey CF Jr, Hartwig JH (1997) Mechanical remodeling of the endothelial surface and actin cytoskeleton induced by fluid flow. Microcirculation 4:439–453

    Article  Google Scholar 

  • Sato M, Levesque MJ, Nerem RM (1987) Micropipette aspiration of cultured bovine aortic endothelial cells exposed to shear stress. Arteriosclerosis 7:276–286

    Google Scholar 

  • Sens P, Isambert H (2002) Undulation instability of lipid membranes under an electric field. Phys Rev Lett 88:128102

    Article  Google Scholar 

  • Simon SA, McIntosh TJ (1986) Depth of water penetration into lipid bilayers. Methods Enzymol 127:511–521

    Article  Google Scholar 

  • Svoboda K, Block SM (1994) Biological applications of optical forces. Annu Rev Biophys Biomol Struct 23:247–285

    Article  Google Scholar 

  • Tang Y, Cao G, Chen X, Yoo J, Yethiraj A, Cui Q (2006) A finite element framework for studying the mechanical response of macromolecules: application to the gating of the mechanosensitive channel MscL. Biophys J 91:1248–1263

    Article  Google Scholar 

  • Teissie J, Golzio M, Rols MP (2005) Mechanisms of cell membrane electropermeabilization: a minireview of our present (lack of ?) knowledge. Biochim Biophys Acta 1724:270–280

    Google Scholar 

  • Tracqui P, Ohayon J (2004) Transmission of mechanical stresses within the cytoskeleton of adherent cells: a theoretical analysis based on a multi-component cell model. Acta Biotheor 52:323–341

    Article  Google Scholar 

  • Weaver JC (1993) Electroporation: a general phenomenon for manipulating cells and tissues. J Cell Biochem 51:426–435

    Google Scholar 

  • Weaver JC (1995) Electroporation theory. Concepts and mechanisms. Methods Mol Biol 55:3–28

    Google Scholar 

  • Zhang PC, Keleshian AM, Sachs F (2001) Voltage-induced membrane movement. Nature 413:428–432

    Article  Google Scholar 

  • Zhelev DV, Needham D (1993) Tension-stabilized pores in giant vesicles: determination of pore size and pore line tension. Biochim Biophys Acta 1147:89–104

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Butler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bae, C., Butler, P.J. Finite element analysis of microelectrotension of cell membranes. Biomech Model Mechanobiol 7, 379–386 (2008). https://doi.org/10.1007/s10237-007-0093-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-007-0093-y

Keywords

Navigation