Skip to main content
Log in

Towards an understanding of the mechanics underlying aortic dissection

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Acute aortic dissection and associated aortic catastrophes are among the most devastating forms of cardiovascular disease, with a remarkably high morbidity and mortality despite current medical and surgical treatment. The mechanics underlying aortic dissection are incompletely understood, and a further understanding of the relevant fluid and solid mechanics may yield not only a better appreciation of its pathogenesis, but also the development of improved diagnostic and therapeutic strategies. After illustrating some of the inadequacies with respect to the extant work on the mechanics of aortic dissection, we alternatively postulate that the clinical hemodynamic disturbances that render the aorta susceptible to the initiation of dissection are principally elevated maximum systolic and mean aortic blood pressure, whereas the hemodynamic disturbances that facilitate propagation of dissection are principally elevated pulse pressure and heart rate. Furthermore, abnormal aortic mechanical properties and/or geometry are requisite for dissection to occur. Specifically, we propose that the degree of anisotropy will directly influence the probability of future aortic dissection. Imaging of the aorta may provide information regarding aortic anisotropy and geometry, and in combination with a hemodynamic risk assessment, has the potential to be able to prospectively identify patients at high risk for future aortic dissection thereby facilitating prophylactic intervention. The aim of the paper is to identify the main mechanical issues that have a bearing on aortic dissection, and to suggest an appropriate mathematical model for describing the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akosah K, Denlinger B, Mohanty P (1999) Safety profile and hemodynamic responses to beta-adrenergic stimulation by dobutamine in heart transplant patients. Chest 116:1587–1592

    Article  Google Scholar 

  • Alyono D, Ring W, Anderson M, Anderson R (1984) Left ventricular adaptation to volume overload from large aortocaval fistula. Surgery 96:360–367

    Google Scholar 

  • Anagnostopoulos C, Prabhakar M, Kittle C (1972) Aortic dissections and dissecting aneurysms. Am J Cardiol 30:263–273

    Article  Google Scholar 

  • Atkin R, Craine R (1976) Continuum theories of mixtures: basic theory and historical development. Q J Mech Appl Math 29:209–244

    Article  MATH  MathSciNet  Google Scholar 

  • Bowen R (1976) Theory of mixtures. In: Eringen A (ed) Continuum physics, vol 3. Academic Press, New York

  • Brookes C, White P, Staples M, Oldershaw P, Redington A, Collins P, Noble M (1998) Myocardial contractility is not constant during spontaneous atrial fibrillation in patients. Circulation 98:1762–1768

    Google Scholar 

  • Carney W Jr, Rheinlander H, Cleveland R (1975) Control of acute aortic dissection. Surgery 78:114–120

    Google Scholar 

  • Chand S, Rajagopal KR (2006) On the diffusion of fluids through solids undergoing large deformations. Math Mech Solids 11:291–305

    MathSciNet  Google Scholar 

  • Dake M, Kato N, Mitchell R, Semba C, Razavi M, Shimono T, Hirano T, Takeda K, Yada I, Miller D (1999) Endovascular stent-graft placement for the treatment of acute aortic dissection. N Engl J Med 340:1546–1552

    Article  Google Scholar 

  • D’Andrea A, Duceschi V, Caso P, Galderisi M, Mercurio B, Liccardo B, Sarubbi B, Scherillo M, Cotrufo M, Calabro R (2001) Usefulness of Doppler tissue imaging for the assessment of right and left ventricular myocardial function in patients with dual-chamber pacing. Int J Cardiol 81:75–83

    Article  Google Scholar 

  • DeBakey M, Henly W, Cooley D, Morris G Jr, Crawford E, Beall A Jr (1964) Surgical management of dissecting aneurysm involving the ascending aorta. Cardiovasc Surg (Torino) 58:200–211

    Google Scholar 

  • Edmunds R, Greenspan K, Fisch C (1970) The role of inotropic variation in ventricular function during atrial fibrillation. J Clin Invest 49:738–746

    Google Scholar 

  • Fowkes F, Macintyre C, Ruckley C (1989) Increasing incidence of aortic aneurysms in England and Wales. BMJ 298:33–35

    Article  Google Scholar 

  • Glower D, Fann J, Speier R, Morrison L, White W, Smith L, Rankin J, Miller D, Wolfe W (1990) Comparison of medical and surgical therapy for uncomplicated descending aortic dissection. Circulation 89:IV39–IV46

    Google Scholar 

  • Gott V, Greene P, Alejo D, Cameron D, Naftel D, Miller D, Gillinov A, Laschinger J, Pyeritz R (1999) Replacement of the aortic root in patients with Marfan’s syndrome. N Engl J Med 340:1307–1313

    Article  Google Scholar 

  • Green A, Adkins J (1960) Large elastic deformations and nonlinear continuum mechanics. Clarendon Press, Oxford

    Google Scholar 

  • Hagan P, Nienaber C, Isselbacher E, Bruckman D, Karavite D, Russman P, Evangelista A, Fattori R, Suzuki T, Oh J, et al (2000) The International Registry of Acute Aortic Dissection (IRAD) new insights into an old disease. JAMA 283:897–903

    Article  Google Scholar 

  • Halpern B, Char F, Murdoch J, Horton W, McKusick V (1971) A prospectus on the prevention of aortic rupture in the Marfan syndrome with data on survivorship without treatment. Johns Hopkins Med J 129:123–129

    Google Scholar 

  • Kadowitz P, Nandiwada P, Gruetter C, Ignarro L, Hyman A (1981) Pulmonary vasodilator responses to nitroprusside and nitroglycerin in the dog. J Clin Invest 67:893–902

    Article  Google Scholar 

  • Kass D, Chen C, Curry C, Talbot M, Berger R, Fetics B, Nevo E (1999) Improved left ventricular mechanics from acute VDD pacing in patients with dilated cardiomyopathy and ventricular conduction delay. Circulation 99:1567–1573

    Google Scholar 

  • Kouchoukos N, Dougenis D (1997) Surgery of the thoracic aorta. N Engl J Med 336:1876–1889

    Article  Google Scholar 

  • Kouchoukos N, Karp R, Blackstone E, Doty D, Hanley F (2003) Acute aortic dissection. Barratt-Boyes Cardiac Surgery. Churchill Livingstone, London

    Google Scholar 

  • Maher K, Pizarro C, Gidding S, Januszewska K, Malec E, Norwood WJ, Murphy J (2003) Hemodynamic profile after the Norwood procedure with right ventricle to pulmonary artery conduit. Circulation 108:782–784

    Article  Google Scholar 

  • Mason D (1978) Afterload reduction and cardiac performance: physiologic basis of systemic vasodilators as a new approach in treatment of congestive heart failure. Am J Med 65:106–125

    Article  Google Scholar 

  • Mehta R, Suzuki T, Hagan P, Bossone E, Gilon D, Llovet A, Maroto L, Cooper J, Smith D, Armstrong W, et al (2002) Predicting death in patients with acute type a aortic dissection. Circulation 105:200–206

    Article  Google Scholar 

  • Mikich B (2003) Dissection of the aorta: a new approach. Heart 89:6–8

    Article  Google Scholar 

  • Morris G Jr, Cooley D, DeBakey M (1964) Correction of dissecting aneurysm of ascending thoracic aorta. Bull Soc Int Chir 23:308–314

    Google Scholar 

  • Moyer J, Pittman A, Belasco R, Woods J (1979) Echocardiographic assessment of the effect of an antihypertensive regimen on left ventricular performance. Am J Cardiol 43:594–599

    Article  Google Scholar 

  • O’Gara P (1999) Acute aortic dissection: Curr treat options. Cardiovasc Med 1:11–18

    Google Scholar 

  • Pearl R, Rosenthal M, Ashton J (1983) Pulmonary vasodilator effects of nitroglycerin and sodium nitroprusside in canine oleic acid-induced pulmonary hypertension. Anesthesiology 58:514–518

    Article  Google Scholar 

  • Pipkin A, Rogers T (1968) A non-linear integral representation for viscoelastic behaviour. J Mech Phys Solids 16:59–72

    Article  MATH  Google Scholar 

  • Prokop E, Palmer R, Wheat Jr M (1970) Hydrodynamic forces in dissecting aneurysms: in-vitro studies in a Tygon model and in dog aortas. Circ Res 27:121–127

    Google Scholar 

  • Rajagopal KR, Wineman AS (2007) On the response of anisotropic non-linear viscoelastic solids (submitted)

  • Rajagopal KR, Wineman AS, Gandhi MV (1987) Some nonlinear diffusion problems within the context of the theory of interacting continua. Int J Eng Sci 25:1441–1457

    Article  MATH  Google Scholar 

  • Rajagopal KR, Tao L (1995) Mechanics of mixtures, series on advances in mathematics for applied sciences, vol 35. World Scientific, Singapore

  • Salim M, Alpert B, Ward J, Pyeritz R (1994) Effect of beta-adrenergic blockade on aortic root rate of dilation in the Marfan syndrome. Am J Cardiol 74:629–633

    Article  Google Scholar 

  • Samohyl I (1982) Rational thermodynamics of chemically-reacting mixtures. Academia, Prague

    Google Scholar 

  • Shores J, Berger K, Murphy E, Pyeritz R (1994) Progression of aortic dilatation and the benefit of long-term beta-adrenergic blockade in Marfan’s syndrome. N Engl J Med 330:1335–1341

    Article  Google Scholar 

  • Sladen R, Klamerus K, Swafford M, Prough D, Mann H, Leslie J, Goldberg J, Levitsky S, Molina J, Mills S (1990) Labetalol for the control of elevated blood pressure following coronary artery bypass grafting. J Cardiothorac Anesth 4:210–221

    Article  Google Scholar 

  • Spencer F, Blake H (1962) A report of the successful surgical treatment of aortic regurgitation from a dissecting aortic aneurysm in a patient with the Marfan syndrome. J Thorac Cardiovasc Surg 44:238–245

    Google Scholar 

  • Svensjo S, Bengtsson H, Bergqvist D (1996) Thoracic and thoracoabdominal aortic aneurysm and dissection: an investigation based on autopsy. Br J Surg 83:68–71

    Article  Google Scholar 

  • Thubrikar M, Agali P, Robicsek F (1999) Wall stress as a possible mechanism for the development of transverse intimal tears in aortic dissection. J Med Eng Technol 23:127–134

    Article  Google Scholar 

  • Tiessen I, Roach M (1993) Factors in the initiation and propagation of aortic dissections in human autopsy studies. ASME J Biomech Eng 115:123–125

    Google Scholar 

  • Truesdell C, Noll W (1965) The non-linear field theories of mechanics. In: Fliigge’s Handbuch der Physik, vol III/3. Springer, Berlin

  • Truesdell C (1957) Sulle Basi Della Termomeccanica I. Rendiconti Lincei 8(22):22–38

    Google Scholar 

  • Truesdell C (1957) Sulle Basi Della Termomeccanica II. Rendiconti Lincei 8(22):158–166

    Google Scholar 

  • Wheat M Jr, Palmer R, Bartley T, Seelman R (1965) Treatment of dissecting aneurysms of the aorta without surgery. J Thorac Cardiovasc Surg 50:364–373

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. R. Rajagopal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajagopal, K., Bridges, C. & Rajagopal, K.R. Towards an understanding of the mechanics underlying aortic dissection. Biomech Model Mechanobiol 6, 345–359 (2007). https://doi.org/10.1007/s10237-006-0069-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-006-0069-3

Keywords

Navigation