Skip to main content
Log in

Microstructural Modeling of Collagen Network Mechanics and Interactions with the Proteoglycan Gel in Articular Cartilage

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Cartilage matrix mechanical function is largely determined by interactions between the collagen fibrillar network and the proteoglycan gel. Although the molecular physics of these matrix constituents have been characterized and modern imaging methods are capable of localized measurement of molecular densities and orientation distributions, theoretical tools for using this information for prediction of cartilage mechanical behavior are lacking. We introduce a means to model collagen network contributions to cartilage mechanics based upon accessible microstructural information (fibril density and orientation distributions) and which self-consistently follows changes in microstructural geometry with matrix deformations. The interplay between the molecular physics of the collagen network and the proteoglycan gel is scaled up to determine matrix material properties, with features such as collagen fibril pre-stress in free-swelling cartilage emerging naturally and without introduction of ad hoc parameters. Methods are developed for theoretical treatment of the collagen network as a continuum-like distribution of fibrils, such that mechanical analysis of the network may be simplified by consideration of the spherical harmonic components of functions of the fibril orientation, strain, and stress distributions. Expressions for the collagen network contributions to matrix stress and stiffness tensors are derived, illustrating that only spherical harmonic components of orders 0 and 2 contribute to the stress, while orders 0, 2, and 4 contribute to the stiffness. Depth- and compression-dependent equilibrium mechanical properties of cartilage matrix are modeled, and advantages of the approach are illustrated by exploration of orientation and strain distributions of collagen fibrils in compressed cartilage. Results highlight collagen-proteoglycan interactions, especially for very small physiological strains where experimental data are relatively sparse. These methods for determining matrix mechanical properties from measurable quantities at the microscale (composition, structure, and molecular physics) may be useful for investigating cartilage structure-function relationships relevant to load-bearing, injury, and repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alhadlaq HA, Xia Y (2004) The structural adaptations in compressed articular cartilage by microscopic MRI (microMRI) T(2) anisotropy. Osteoarthr Cartil 12(11):887–894

    Article  PubMed  Google Scholar 

  • Armstrong CG, Lai WM, Mow VC (1984) An analysis of the unconfined compression of articular cartilage. J Biomech Eng 106:165–173

    Article  PubMed  Google Scholar 

  • Barocas VH, Tranquillo RT (1997) An anisotropic biphasic theory of tissue-equivalent mechanics: the interplay among cell traction, fibrillar network deformation, fibril alignment, and cell contact guidance. J Biomech Eng 119(2):137–145

    Article  PubMed  Google Scholar 

  • Bashir A, Gray ML, Hartke J, Burstein D (1999) Nondestructive imaging of human cartilage glycosaminoglycan concentration by MRI. Magn Reson Med 41(5):857–865

    Article  PubMed  Google Scholar 

  • Benninghoff A (1925) Form und bau der gelenkknorpel in ihren beziehungen zur funktion II. Der aufbau des gelenkknorpels in seinen beziehungen zur funktion. Z Zellforsch Mikrosk Anat 2:783–862

    Article  Google Scholar 

  • Billiar KL, Sacks MS (2000) Biaxial mechanical properties of the native and glutaraldehyde-treated aortic valve cusp: Part II—A structural constitutive model. J Biomech Eng 122(4):327–335

    Article  PubMed  Google Scholar 

  • Brenner H, Edwards DA (1993) Macrotransport Processes. Butterworth, Stoneham

    Google Scholar 

  • Buschmann MD, Grodzinsky AJ (1995) A molecular model of proteoglycan-associated electrostatic forces in cartilage mechanics. J Biomech Eng 117:179–192

    Article  PubMed  Google Scholar 

  • Camacho NP, West P, Torzilli PA, Mendelsohn R (2001) FTIR microscopic imaging of collagen and proteoglycan in bovine cartilage. Biopolymers 62(1):1–8

    Article  PubMed  Google Scholar 

  • Chen AC, Bae WC, Schinagl RM, Sah RL (2001) Depth- and strain-dependent mechanical and electromechanical properties of full- thickness bovine articular cartilage in confined compression. J Biomech 34(1):1–12

    Article  PubMed  Google Scholar 

  • Driessen NJ, Peters GW, Huyghe JM, Bouten CV, Baaijens FP (2003) Remodeling of continuously distributed collagen fibres in soft connective tissues. J Biomech 36(8):1151–1158

    Article  PubMed  Google Scholar 

  • Eisenberg SR, Grodzinsky AJ (1988) Electrokinetic micromodel of extracellular matrix and other polyelectrolyte networks. Physicochemical Hydrodynamics 10:517–539

    Google Scholar 

  • Farquhar T, Dawson PR, Torzilli PA (1990) A microstructural model for the anisotropic drained stiffness of articular cartilage. J Biomech Eng 112:414–425

    Article  PubMed  Google Scholar 

  • Frank EH, Grodzinsky AJ (1987) Cartilage electromechanics I—electrokinetic transduction and the effects of electrolyte pH and ionic strength. J Biomech 20(6):615–627

    Article  PubMed  Google Scholar 

  • Grodzinsky AJ (1983) Electromechanical and physicochemical properties of connective tissues. CRC Criti Rev Biomed Eng 9(2):133–199

    Google Scholar 

  • Happel J (1959) Viscous flow relative to arrays of cylinders. AIChE Journal 5:174–177

    Article  Google Scholar 

  • Hunziker EB, Michel M, Studer D (1997) Ultrastructure of adult human articular cartilage matrix after cryotechnical processing. Microsc Res Tech 37(4):271–284

    Article  PubMed  Google Scholar 

  • Jeffery AK, Blunn GW, Archer CW, Bentley G (1991) Three- dimensional collagen architecture in bovine articular cartilage. J Bone Joint Surg Br 73(5):795–801

    PubMed  Google Scholar 

  • Jin M, Grodzinky AJ (2001) Effect of electrostatic interactions between glycosaminoglycans on the shear stiffness of cartilage: a molecular model and experiments. Macromolecules 34:8330–8339

    Article  Google Scholar 

  • Jurvelin JS, Buschmann MD, Hunziker EB (1997) Optical and mechanical determination of poisson’s ratio of adult bovine humeral articular cartilage. J Biomech 30(3):235–241

    Article  PubMed  Google Scholar 

  • Kääb MJ, Ito K, Clark JM, Notzli HP (1998) Deformation of articular cartilage collagen structure under static and cyclic loading. J Orthop Res 16(6):743–751

    Article  PubMed  Google Scholar 

  • Khalsa P, Eisenberg SR (1997) Compressive behavior of articular cartilage is not completely explained by proteoglycan osmotic pressure. J Biomech 30(6):589–594

    Article  PubMed  Google Scholar 

  • Kim YJ, Bonassar LJ, Grodzinsky AJ (1995) The role of cartilage streaming potential, fluid flow, and pressure in the stimulation of chondrocyte biosynthesis during dynamic compression. J Biomech 28(9):1055–1066

    Article  PubMed  Google Scholar 

  • Kuwabara S (1959) The forces experienced by randomly distributed parallel circular cylinders or spheres in a viscous flow at small Reynolds numbers. J Physical Soc Japan 14:527–532

    Article  MathSciNet  Google Scholar 

  • Li LP, Buschmann MD, Shirazi-Adl A (2000) A fibril reinforced nonhomogeneous poroelastic model for articular cartilage: inhomogeneous response in unconfined compression. J Biomech 33(12):1533–1541

    Article  PubMed  Google Scholar 

  • Luo Z, Sun Y, Fujii T, An K (2004) Single molecule mechanical properties of type II collagen and hyaluronan measured by optical tweezers. Biorheology 41(3–4):247–254

    PubMed  Google Scholar 

  • Malvern L (1969) Introduction to the mechanics of a continuous medium. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Maroudas A (1976) Balance between swelling pressure and collagen tension in normal and degenerate cartilage. Nature 260:808–809

    Article  PubMed  Google Scholar 

  • Maroudas A, Bannon C (1981) Measurement of swelling pressure in cartilage and comparison with the osmotic pressure of constituent proteoglycans. Biorheology 18(3–6):619–632

    PubMed  Google Scholar 

  • Maroudas A, Muir H, Wingham J (1969) The correlation of fixed negative charge with glycosaminoglycan content of human articular cartilage. Biochim Biophys Acta 177:492–500

    PubMed  Google Scholar 

  • Maroudas A, Wachtel E, Grushko G, Katz EP, Weinberg P (1991) The effect of osmotic and mechanical pressures on water partitioning in articular cartilage. Biochim Biophys Acta 1073:285–294

    PubMed  Google Scholar 

  • Mizrahi J, Maroudas A, Lanir Y, Ziv I, Webber TJ (1986) The instantaneous deformation of cartilage: effects of collagen fiber orientation and osmotic stress. Biorheology 23:311–330

    PubMed  Google Scholar 

  • Mollenhauer J, Aurich M, Muehleman C, Khelashvilli G, Irving TC (2003) X-ray diffraction of the molecular substructure of human articular cartilage. Connect Tissue Res 44(5):201–207

    Article  PubMed  Google Scholar 

  • Morel V, Quinn TM (2004a) Short-term changes in cell and matrix damage following mechanical injury of articular cartilage explants and modeling of microphysical mediators. Biorheology 41(3–4):509–519

    Google Scholar 

  • Morel V, Quinn TM (2004b) Cartilage injury by ramp compression near the gel diffusion rate. J Orthop Res 22(1):145–151

    Article  Google Scholar 

  • Mow VC, Holmes MH, Lai WM (1984) Fluid transport and mechanical properties of articular cartilage: a review. J Biomech 17(5):377–394

    Article  PubMed  Google Scholar 

  • Park S, Krishnan R, Nicoll SB, Ateshian GA (2003) Cartilage interstitial fluid load support in unconfined compression. J Biomech 36(12):1785–1796

    Article  PubMed  Google Scholar 

  • Pins G, Huang E, Christiansen D, Silver F (1997) Effects of static axial strain on the tensile properties and failure mechanisms of collagen fibers. J Appl Polym Sci 63(11):1429–1440

    Article  Google Scholar 

  • Quinn TM, Dierickx P, Grodzinsky AJ (2001a) Glycosaminoglycan network geometry may contribute to anisotropic hydraulic permeability in cartilage under compression. J Biomech 34(11):1483–1490

    Article  PubMed  Google Scholar 

  • Quinn TM, Morel V, Meister JJ (2001b) Static compression of articular cartilage can reduce solute diffusivity and partitioning: implications for the chondrocyte biological response. J Biomech 34(11):1463–1469

    Article  PubMed  Google Scholar 

  • Reynaud B, Quinn TM (2006) Anisotropic hydraulic permeability in compressed articular cartilage. J Biomechan 39(1):131–137

    Article  Google Scholar 

  • Seog J, Dean D, Plaas A, Wong-Palms S, Grodzinsky A, Ortiz C (2002) Direct measurement of glycosaminoglycan intermolecular interactions via high-resolution force spectroscopy. Macromolecules 35:5601–5615

    Article  Google Scholar 

  • Soulhat J, Buschmann MD, Shirazi-Adl A (1999) A fibril-network-reinforced biphasic model of cartilage in unconfined compression. J Biomech Eng 121(3):340–347

    Article  PubMed  Google Scholar 

  • Torzilli PA, Arduino JM, Gregory JD, Bansal M (1997) Effect of proteoglycan removal on solute mobility in articular cartilage. J Biomechan 30(9):895–902

    Article  Google Scholar 

  • Williams JM, Uebelhart D, Thonar EJ, Kocsis K, Modis L (1996) Alteration and recovery of the spatial orientation of the collagen network of articular cartilage in adolescent rabbits following intra-articular chymopapain injection. Connect Tissue Res 34(2):105–117

    Article  PubMed  Google Scholar 

  • Wilson W, van Donkelaar CC, van Rietbergen B, Ito K, Huiskes R (2004) Stresses in the local collagen network of articular cartilage: a poroviscoelastic fibril-reinforced finite element study. J Biomech 37(3):357–366

    Article  PubMed  Google Scholar 

  • Wilson W, van Donkelaar CC, van Rietbergen B, Huiskes R (2005) A fibril-reinforced poroviscoelastic swelling model for articular cartilage. J Biomech 38(6):1195–1204

    Article  PubMed  Google Scholar 

  • Xia Y, Elder K (2001) Quantification of the graphical details of collagen fibrils in transmission electron micrographs. J Microsc 204 (Pt 1):3–16

    Article  PubMed  MathSciNet  Google Scholar 

  • Xia Y, Moody JB, Burton-Wurster N, Lust G (2001) Quantitative in situ correlation between microscopic MRI and polarized light microscopy studies of articular cartilage. Osteoarthr Cartil 9(5):393–406

    Article  PubMed  Google Scholar 

  • Zamparo O, Comper WD (1989) Hydraulic conductivity of chondroitin sulfate proteoglycan solutions. Arch Biochem Biophys 274(1): 259–269

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. M. Quinn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quinn, T.M., Morel, V. Microstructural Modeling of Collagen Network Mechanics and Interactions with the Proteoglycan Gel in Articular Cartilage. Biomech Model Mechanobiol 6, 73–82 (2007). https://doi.org/10.1007/s10237-006-0036-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-006-0036-z

Keywords

Navigation