Skip to main content

Advertisement

Log in

Wind-induced subduction at the South Atlantic subtropical front

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

The South Atlantic Subtropical Front, associated with the eastward-flowing South Atlantic Current, separates the colder, nutrient-rich waters of the subpolar gyre from the warmer, nutrient-poor waters of the subtropical gyre. Perturbations to the quasi-geostrophic, eastward flow generate meanders and filaments which induce cross-frontal exchange of water properties. Down-front winds transport denser waters from the South over warm waters from the North, inducing convective instability and subduction. Such processes occur over spatial scales of the order of 1 km and thus require high horizontal spatial resolution. In this modeling study, a high-resolution (4 km) regional grid is embedded in a basin-wide configuration (12 km) of the South Atlantic Ocean in order to test the importance of submesoscale processes in water mass subduction along the subtropical front. Stronger and more numerous eddies obtained in the high-resolution run yield more intense zonal jets along the frontal zone. Such stronger jets are more susceptible to instabilities, frontogenesis, and the generation of submesoscale meanders and filaments with \(\mathcal {O}(1)\) Rossby number. As a consequence, vertical velocities larger than 100 md 1 are obtained in the high-resolution run, one order of magnitude larger than in the low-resolution run. Wind-driven subduction occurs along the frontal region, associated with negative Ertel potential vorticity in the surface layer. Such processes are not observed in the low-resolution run. A passive tracer experiment shows that waters with density characteristics similar to subtropical mode waters are preferentially subducted along the frontal region. The wind-driven buoyancy flux is shown to be much larger than thermal or haline fluxes during the wintertime, which highlights the importance of the frictional component in extracting PV from the surface ocean and inducing subduction, a process that has been overlooked in subtropical mode water formation in the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Bachman S, Taylor J (2014) Modelling of partially-resolved oceanic symmetric instability. Ocean Model 82:15–27

    Article  Google Scholar 

  • Belkin IM, Gordon AL (1996) Southern ocean fronts from the greenwich meridian to tasmania. J Geophys Res Oceans 101(C2):3675–3696

    Article  Google Scholar 

  • Carton JA, Giese BS (2008) A reanalysis of ocean climate using simple ocean data assimilation (soda). Mon Weather Rev 136(8):2999–3017

    Article  Google Scholar 

  • D’Asaro E, Lee C, Rainville L, Harcourt R, Thomas L (2011) Enhanced turbulence and energy dissipation at ocean fronts. Science 332(6027):318–322

    Article  Google Scholar 

  • Debreu L, Vouland C, Blayo E (2008) Agrif: adaptive grid refinement in fortran. Comput Geosci 34 (1):8–13

    Article  Google Scholar 

  • Eady ET (1949) Long waves and cyclone waves. Tellus 1(3):33–52

    Article  Google Scholar 

  • Egbert GD, Erofeeva SY (2002) Efficient inverse modeling of barotropic ocean tides. J Atmos Ocean Technol 19(2):183–204

    Article  Google Scholar 

  • Fox-Kemper B, Ferrari R, Hallberg R (2008) Parameterization of mixed layer eddies. Part i: Theory and diagnosis. J Phys Oceanogr 38(6):1145–1165

    Article  Google Scholar 

  • Gordon AL, Weiss RF, Smethie WM, Warner MJ (1992) Thermocline and intermediate water communication between the south atlantic and indian oceans. J Geophys Res Oceans 97(C5):7223–7240

    Article  Google Scholar 

  • Guinehut S, Dhomps A, Larnicol G, Le Traon PY (2012) High resolution 3-d temperature and salinity fields derived from in situ and satellite observations. Ocean Sci 8(5):845–857

    Article  Google Scholar 

  • Hart J (1996) On nonlinear ekman surface-layer pumping. J Phys Oceanogr 26(7):1370–1374

    Article  Google Scholar 

  • Hosegood P, Gregg M, Alford M (2013) Wind-driven submesoscale subduction at the north pacific subtropical front. J Geophys Res Oceans 118(10):5333–5352

    Article  Google Scholar 

  • Joyce TM, Thomas LN, Bahr F (2009) Wintertime observations of subtropical mode water formation within the gulf stream. Geophys Res Lett 36:L02607. doi:10.1029/2008GL035918

    Article  Google Scholar 

  • Karleskind P, Lévy M, Mémery L (2011) Modifications of mode water properties by sub-mesoscales in a bio-physical model of the northeast atlantic. Ocean Model 39(1):47–60

    Article  Google Scholar 

  • Lévy M, Klein P, Tréguier A M, Iovino D, Madec G, Masson S, Takahashi K (2010) Modifications of gyre circulation by sub-mesoscale physics. Ocean Model 34(1):1–15

    Article  Google Scholar 

  • Mahadevan A, Tandon A (2006) An analysis of mechanisms for submesoscale vertical motion at ocean fronts. Ocean Model 14:241–256

    Article  Google Scholar 

  • Mahadevan A, Tandon A, Ferrari R (2010) Rapid changes in mixed layer stratification driven by submesoscale instabilities and winds. J Geophys Res 115(C3):C03,017

    Article  Google Scholar 

  • Marshall JC, Nurser AG (1992) Fluid dynamics of oceanic thermocline ventilation. J Phys Oceanogr 22 (6):583–595

    Article  Google Scholar 

  • Mulet S, Rio MH, Mignot A, Guinehut S, Morrow R (2012) A new estimate of the global 3d geostrophic ocean circulation based on satellite data and in-situ measurements. Deep-Sea Res II Top Stud Oceanogr 77:70–81

    Article  Google Scholar 

  • Provost C, Escoffier C, Maamaatuaiahutapu K, Kartavtseff A, Garċon V (1999) Subtropical mode waters in the south atlantic ocean. J Geophys Res 104(C9):21–033

    Article  Google Scholar 

  • Shcherbina A, Gregg M, Alford M, Harcourt R (2010) Three-dimensional structure and temporal evolution of submesoscale thermohaline intrusions in the North Pacific subtropical frontal zone. J Phys Oceanogr 40:1669–1689

    Article  Google Scholar 

  • Smythe-Wright D, Chapman P, Rae CD, Shannon L, Boswell S (1998) Characteristics of the south atlantic subtropical frontal zone between 15 w and 5 e. Deep-Sea Res I Oceanogr Res Pap 45(1):167–192

    Article  Google Scholar 

  • Stern M (1965) Interaction of a uniform wind stress with a geostrophic vortex. Deep-Sea Res 12:355–367

    Google Scholar 

  • Stone PH (1970) On non-geostrophic baroclinic stability: Part ii. J Atmos Sci 27(5):721–726

    Article  Google Scholar 

  • Stramma L, Peterson RG (1990) The south atlantic current. J Phys Oceanogr 20(6):846–859

    Article  Google Scholar 

  • Thomas L, Lee C (2005) Intensification of ocean fronts by down-front winds. J Phys Oceanogr 35(6):1086–1102

    Article  Google Scholar 

  • Thomas LN (2005) Destruction of potential vorticity by winds. J Phys Oceanogr 35(12):2457–2466

    Article  Google Scholar 

  • Thomas LN, Taylor JR, Ferrari R, Joyce TM (2013) Symmetric instability in the gulf stream. Deep-Sea Res II Top Stud Oceanogr 91:96–110

    Article  Google Scholar 

  • Williams R, Follows M (1998) The ekman transfer of nutrients and maintenance of new production over the north atlantic. Deep-Sea Res I Oceanogr Res Pap 45(2):461–490

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Bolsa de Produtividade em Pesquisa (Process: 306971/2016-0) and Project 457118/2012-1. Funding from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) - Projeto REMARSUL (Processo CAPES 23038.004299/2014-53) is also acknowledged. The author would like to thank one anonymous reviewer for comments that significantly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo H. R. Calil.

Additional information

Responsible Editor: Amala Mahadevan

This article is part of the Topical Collection on the 48th International Liège Colloquium on Ocean Dynamics, Liège, Belgium, 23-27 May 2016

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calil, P. Wind-induced subduction at the South Atlantic subtropical front. Ocean Dynamics 67, 1351–1365 (2017). https://doi.org/10.1007/s10236-017-1090-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-017-1090-z

Keywords

Navigation