Skip to main content
Log in

Tidal asymmetry in a funnel-shaped estuary with mixed semidiurnal tides

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

Different types of tidal asymmetry (see review of de Swart and Zimmerman Annu Rev Fluid Mech 41: 203–229, 2009) are examined in this study. We distinguish three types of tidal asymmetry: duration and magnitude differences between flood and ebb tidal flow, duration difference between the rising and falling tides. For waterborne substance transport, the first two asymmetries are important while the last one is not. In this study, we take the Huangmaohai Estuary (HE), Pearl River Delta, China as an example to examine the spatio-temporal variations of the tidal asymmetry in a mixed semidiurnal tidal regime and to explain them by investigating the associated mechanisms. The methodology defining the tidal duration asymmetry and velocity skewness, proposed by Nidzieko (J Geophys Res 115: C08006. doi: 10.1029/2009JC005864, 2010) and synthesized by Song et al. (J Geophys Res 116: C12007. doi: 10.1029/2011JC007270, 2011), is utilized here and referred to as tidal duration asymmetry (TDA) and flow velocity asymmetry (FVA), respectively. The methodology is further used to quantify the flow duration asymmetry (FDA). A positive asymmetry means a shorter duration of low water slack for FDA, a shorter duration of the rising tide for TDA, and a flood dominance for FVA and vice versa. The Regional Ocean Modeling System (ROMS) model is used to provide relatively long-term water elevation and velocity data and to conduct diagnostic experiments. In the HE, the main tidal constituents are diurnal tides K 1, O 1 and semidiurnal tides M 2 and S 2. The interaction among the diurnal and semidiurnal tides generates a negative tidal asymmetry, while the interactions among semidiurnal tides and their overtides or compound tides result in a positive tidal asymmetry. The competition among the above interactions determines the FDA and TDA, whereas for the FVA, aside from the interaction among different tidal constituents, an extra component, the residual flow, plays an important role. The results show that the FDA exhibits a predominant tendency of shorter duration of low water slack, favoring the landward transport of fine sediment. The FVA demonstrates prevailing ebb dominance in the study period, favoring the seaward transport of coarse sediment. This ebb dominance is primarily induced by the interaction among the residual flow and the tidal constituents. The external TDA in the ocean experiences distinct cyclic variations with positive asymmetry when semidiurnal tides dominate and negative asymmetry during the periods when diurnal tides dominate. The funnel shape of the HE is advantageous for the development of positive tidal asymmetry as the semidiurnal tides are more amplified than the diurnal tides. The effect of river flow can enhance the ebb dominance, while the baroclinic effect is more complex. The existence of channel and shoals favors the development of residual pattern with seaward flow (ebb dominance) in the channel and landward flow (flood dominance) at the shoal when the tides are strong (semidiurnal tides dominate) and the residual pattern with landward flow (flood dominance) in the channel and seaward flow (ebb dominance) at the shoal when the baroclinic effect is dominant (diurnal tides dominate).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Alebregtse NC, de Swart HE, Schuttelaars HM (2013) Resonance characteristics of tides in branching channels. J Fluid Mech 728:R3. doi:10.1017/jfm.2013.319

    Article  Google Scholar 

  • Blanton JO, Andrade FA (2001) Distortion of tidal currents and the lateral transfer of salt in a shallow coastal plain estuary (O Estuario do Mira, Portugal). Estuaries 24:467–480

    Article  Google Scholar 

  • Boyer T, Levitus S, Garcia H, Locarnini RA, Stephens C, Antonov J (2005) Objective analyses of annual, seasonal, and monthly temperature and salinity for the World Ocean on a 0.25° grid. Int J Climatol 25(7):931–945

    Article  Google Scholar 

  • Chapman DC (1985) Numerical treatment of cross-shelf open boundaries in a barotropic coastal ocean model. J Phys Oceanogr 15:1060–1075

    Article  Google Scholar 

  • Chernetsky AS, Schuttelaars HM, Talke SA (2010) The effect of tidal asymmetry and temporal settling lag on sediment trapping in tidal estuaries. Ocean Dyn 60:1219–1241

    Article  Google Scholar 

  • Daniell JJ (2015) Bedload parting in western Torres Strait, northern Australia. Cont Shelf Res 93:58–69

    Article  Google Scholar 

  • de Swart HE, Zimmerman JTF (2009) Morphodynamics of tidal inlet systems. Annu Rev Fluid Mech 41:203–229

    Article  Google Scholar 

  • Emery WJ, Thomason RE (2001) Data analysis methods in physical oceanography, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • Ferrarin C, Tomasin A, Bajo M, Petrizzo A, Umgiesser G (2015) Tidal changes in a heavily modified coastal wetland. Cont Shelf Res 101:22–33

    Article  Google Scholar 

  • Flather RA (1976) A tidal model of the northwest European continental shelf. Mem Soc R Sci Liège 6:141–164

    Google Scholar 

  • Friedrichs CT (2012) Tidal flat morphodynamics: a synthesis. In: Hanson JD, Flemming BW (eds) Treatise on estuarine and coastal science, vol 3, Estuarine and coastal geology and geomorphology. Academic, Waltham

    Google Scholar 

  • Friedrichs CT, Aubrey DG (1988) Non-linear tidal distortion in shallow well-mixed estuaries: a synthesis. Estuar Coast Shelf Sci 27:521–545

    Article  Google Scholar 

  • Friedrichs CT, Aubrey DG (1994) Tidal propagation in strongly convergent channels. J Geophys Res 99(C2):3321–3336

    Article  Google Scholar 

  • Friedrichs CT, Madsen OS (1992) Nonlinear diffusion of the tidal signal in frictionally dominated embayments. J Geophys Res 97(C4):5637–5650

    Article  Google Scholar 

  • Gan J, Li L, Wang D, Guo X (2009) Interaction of a river plume with coastal upwelling in the northeastern South China Sea. Cont Shelf Res 29:728–740

    Article  Google Scholar 

  • Godin G (1985) Modification of river’s tide by its discharge. J Waterw Port Coast Ocean Eng 111(2):257–274

    Article  Google Scholar 

  • Godin G, Martinez A (1994) Numerical experiments to investigate the effects of quadratic friction on the propagation of tides in a channel. Cont Shelf Res 14(7):723–748

    Article  Google Scholar 

  • Gong W, Liu H, Ren J, Yu H (2012) The study of tidal propagation in the Huangmaohai estuary and its underlying mechanisms (In Chinese). Acta Oceanol Sin 34(3):41–54

    Google Scholar 

  • Gong W, Jia L, Shen J, Liu JT (2014) Sediment transport in response to changes in river discharge and tidal mixing in a funnel-shaped micro-tidal estuary. Cont Shelf Res 76:89–107

    Article  Google Scholar 

  • Grone P (1967) On the residual transport of suspended matter by an alternating tidal current. Neth J Sea Res 3:564–575

    Article  Google Scholar 

  • Hoitink AJF, Hoekstra P (2003) Hydrodynamic control of the supply of reworked terrigenous sediment to coral reefs in the Bay of Banten (NW Java, Indonesia). Estuar Coast Shelf Sci 58:743–755

    Article  Google Scholar 

  • Hoitink AJF, Hoekstra P, van Maren DS (2003) Flow asymmetry associated with astronomical tides: implications for the residual transport of sediment. J Geophys Res 108(C10):3315. doi:10.1029/2002JC001539

    Article  Google Scholar 

  • Huang F, Ye C, Wen X, Yan J, Zhang N (1994) Characteristics of salinity and active range of saline wedge in the Huangmaohai Estuary (in Chinese). Mar Sci Bull 23(2):33–39

    Google Scholar 

  • Jay DA, Flinchem EP (1997) Interaction of fluctuating river flow with a barotropic tide: a demonstration of wavelet tidal analysis methods. J Geophys Res 102:5705–5720

    Article  Google Scholar 

  • Jewell SA, Walker DJ, Fortunato AB (2012) Tidal asymmetry in a coastal lagoon subject to a mixed tidal regime. Geomorphology 138:171–180

    Article  Google Scholar 

  • Jia L, Luo J, Ren J (2012) The analysis of the evolution of a sand bar and its formation in the Huangmao Bay in the Pearl River Delta (in Chinese). Acta Oceanol Sin 34(5):120–127

    Google Scholar 

  • Li Y (2014) A method of quantifying tidal current asymmetry and its application in the Beilun River estuary (in Chinese). Chin Ocean Eng 32(4):110–116

    Google Scholar 

  • Li C, O’Donnel J (1997) Tidally driven residual circulation in shallow estuaries with lateral depth variation. J Geophys Res 102(C13):27915–27929

    Article  Google Scholar 

  • Mantovanelli A, Marone E, da Silva ET, Lautert LF, Klingenfuss MS, PrataJr VP, Noernberg MA, Knoppers BA, Augulo RJ (2004) Combined tidal velocity and duration asymmetries as a determinant of water transport and residual flow in Paranagua Bay estuary. Estuar Coast Shelf Sci 59:523–537

    Article  Google Scholar 

  • Mao Q, Shi P, Yin K, Gan J, Qi Y (2004) Tides and tidal currents in the Pearl River Estuary. Cont Shelf Res 24:1797–1808

    Article  Google Scholar 

  • Mellor GL, Yamada T (1982) Development of a turbulence closure model for geophysical fluid problems. Rev Geophys Space Phys 20:851–875

    Article  Google Scholar 

  • Moore RD, Wolf J, Souza AJ, Flint SS (2009) Morphological evolution of the Dee Estuary, Eastern Irish Sea, UK: a tidal asymmetry approach. Geomorphology 103:588–596

    Article  Google Scholar 

  • National Ocean Service (2000) Tide and current glossary. NOAA, Silver Spring

    Google Scholar 

  • Nidzieko NJ (2010) Tidal asymmetry in estuaries with mixed semidiurnal/diurnal tides. J Geophys Res 115, C08006. doi:10.1029/2009JC005864

    Article  Google Scholar 

  • Nidzieko NJ, Ralston DK (2012) Tidal asymmetry and velocity skew over tidal flats and shallow channels within a macrotidal river delta. J Geophys Res 117, C03001. doi:10.1029/2011JC007384

    Article  Google Scholar 

  • O’Callaghan JM, Pattiaratchi CB, Hamilton DP (2010) The role of intratidal oscillations in sediment resuspension in a diurnal, partially mixed estuary. J Geophys Res 115, C07018. doi:10.1029/2009JC005760

    Google Scholar 

  • Orlanski I (1976) A simple boundary condition for unbounded hyperbolic flows. J Comput Phys 21:251–269

    Article  Google Scholar 

  • Pan J, Gu Y, Wang D (2014) Observations and numerical modeling of the Pearl River plume in summer season. J Geophys Res 119:2480–2500. doi:10.1002/2013JC009042

    Article  Google Scholar 

  • Parker BB (1991) The relative importance of the various nonlinear mechanisms in a wide range of tidal interactions (review). In: Parker BB (ed) Tidal hydrodynamics. Wiley, New York, pp 237–268

    Google Scholar 

  • Pawlowicz R, Beardsley B, Lentz S (2002) Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Comput Geosci 28:929–937

    Article  Google Scholar 

  • Ridderinkhof W, de Swart HE, van der Vegt M, Alebregtse NC, Hoekstra P (2014) Geometry of tidal inlet systems: a key factor for the net sediment transport in tidal inlets. J Geophys Res 119:6988–7006. doi:10.1002/2014JC010226

    Article  Google Scholar 

  • Roos PC, Schuttelaars HM (2015) Resonance properties of tidal channels with multiple retention basins: role of adjacent sea. Ocean Dyn 65(3):311–324

    Article  Google Scholar 

  • Schuttelaars HM, de Swart HE (1996) An idealized long-term model of a tidal inlet. Eur J Mech B Fluids 15:55–80

    Google Scholar 

  • Schuttelaars HM, de Swart HE (2000) Multiple morphodynamic equilibria in tidal embayments. J Geophys Res 105:24105–24118

    Article  Google Scholar 

  • Song Y, Haidvogel DB (1994) A semi-implicit ocean circulation model using a generalized topography-following coordinate system. J Comput Phys 115(1):228–244

    Article  Google Scholar 

  • Song D, Wang XH, Kiss AE, Bao X (2011) The contribution to tidal asymmetry by different combinations of tidal constituents. J Geophys Res 116, C12007. doi:10.1029/2011JC007270

    Article  Google Scholar 

  • Speer PE, Aubrey DG (1985) A study of non-linear tidal propagation in shallow inlet/estuarine systems. Part II: theory. Estuar Coast Shelf Sci 21:207–224

    Article  Google Scholar 

  • Suh SW, Lee HY, Kim HJ (2014) Spatio-temporal variability of tidal asymmetry due to multiple coastal constructions along the west coast of Korea. Estuar Coast Shelf Sci 151:336–346

    Article  Google Scholar 

  • van Maren DS, Gerritsen H (2012) Residual flow and tidal asymmetry in the Singapore Strait, with implications for resuspension and residual transport of sediment. J Geophys Res 117, C04021. doi:10.1029/2011JC007615

    Google Scholar 

  • van Maren DS, Winterwerp JC (2013) The role of flow asymmetry and mud properties on tidal flat sedimentation. Cont Shelf Res 60S:S71–S84

    Article  Google Scholar 

  • van Maren DS, Hoekstra P, Hoitink AJF (2004) Tidal flow asymmetry in the diurnal regime: bed load transport and morphologic changes around the Red River Delta. Ocean Dyn 54:424–434

    Google Scholar 

  • Winterwerp JC (2011) Fine sediment transport by tidal asymmetry in the high-concentrated Ems river: indications for a regime shift in response to channel deepening. Ocean Dyn 61:203–215

    Article  Google Scholar 

  • Wong KC (1994) On the nature of transverse variability in a coastal plain estuary. J Geophys Res 99(C7):14209–14222

    Article  Google Scholar 

  • Wong L, Chen J, Xue H, Dong L, Su J, Heinke G (2003) A model study of the circulation in the Pearl River Estuary (PRE) and its adjacent coastal waters: 1. Simulations and comparison with observations. J Geophys Res 108(C5):3156. doi:10.1029/2002JC001451

    Article  Google Scholar 

  • Zhang W, Ruan X, Zheng J, Zhu Y, Wu H (2010) Long-term change in tidal dynamics and its cause in the Pearl River Delta, China. Geomorphology 120:209–223

    Article  Google Scholar 

  • Zu T, Wang D, Gan J, Guan W (2014) On the role of wind and tide in generating variability of Pearl River plume during summer in a coupled wide estuary and shelf system. J Mar Syst 136:65–79

    Article  Google Scholar 

Download references

Acknowledgments

This study is funded by the National Natural Science Foundation of China (Grant No. 41061130542 and No. 41576089) and NWO of the Netherlands (Grant No. 843.10.005). The authors would like to acknowledge Miss Huiping Li for her help in model validation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heng Zhang.

Additional information

Responsible Editor: John Wilkin

Appendix: Derivation of tidal asymmetry through combinations of tidal constituents

Appendix: Derivation of tidal asymmetry through combinations of tidal constituents

For the FVA, the time series of the depth-averaged axial velocity at a Sta. is expressed as:

$$ u={\displaystyle \sum_{i=0}^M{u}_i=}{\displaystyle \sum_{i=0}^M{a}_i \cos}\left({\omega}_it-{\varphi}_i\right) $$
(18)

where a, ω, and φ are the velocity amplitude, frequency, and phase of the tidal constituents. The velocity skewness is

$$ {\gamma}_{FVA}=\frac{E\left[{u}^3\right]}{{\left(E\left[{u}^2\right]\right)}^{3/2}} $$
(19)

where E is the expectation of a variable.

$$ {u}^3={\left({\displaystyle \sum_{i=0}^M{u}_i}\right)}^3={\displaystyle \sum_{i=0}^M{u}_i^3+3{\displaystyle \sum_{\begin{array}{l}i,j=0\\ {}i\ne j\end{array}}^M{u}_i^2{u}_j+6{\displaystyle \sum_{\begin{array}{l}i,j,k=0\\ {}i\ne j\ne k\end{array}}^M{u}_i{u}_j{u}_k}}} $$
(20)
$$ {u}^2={\left({\displaystyle \sum_{i=0}^M{u}_i}\right)}^2={\displaystyle \sum_{i=0}^M{u}_i^2+2{\displaystyle \sum_{\begin{array}{l}i,j=0\\ {}i\ne j\end{array}}^M{u}_i{u}_j}} $$
(21)

and

$$ {u}_i^2=\frac{1}{2}{a}_i^2\left[1+ \cos \left(2{\omega}_it-2{\varphi}_i\right)\right] $$
(22‐1)
$$ {u}_i{u}_j=\frac{1}{2}{a}_i{a}_j\left\{ \cos \left[\left({\omega}_i+{\omega}_j\right)t-\left({\varphi}_i+{\varphi}_j\right)\right]+ \cos \left[\left({\omega}_i-{\omega}_j\right)t-\left({\varphi}_i-{\varphi}_j\right)\right]\right\} $$
(22‐2)
$$ {u}_i^3=\frac{1}{4}{a}_i^3\left[ \cos \left(3{\omega}_it-3{\varphi}_i\right)+3 \cos \left({\omega}_it-{\varphi}_i\right)\right] $$
(22‐3)
$$ {u}_i^2{u}_j=\frac{1}{4}{a}_i^2{a}_j\left\{ \cos \left[\left(2{\omega}_i+{\omega}_j\right)t-\left(2{\varphi}_i+{\varphi}_j\right)\right]+ \cos \left[\left(2{\omega}_i-{\omega}_j\right)t-\left(2{\varphi}_i-{\varphi}_j\right)\right]+2 \cos \left({\omega}_jt-{\varphi}_j\right)\right\} $$
(22‐4)
$$ \begin{array}{l}{u}_i{u}_j{u}_k=\frac{1}{4}{a}_i{a}_j{a}_k\left\{ \cos \left[\left({\omega}_i+{\omega}_j-{\omega}_k\right)t-\left({\varphi}_i+{\varphi}_j-{\varphi}_k\right)\right]+ \cos \left[\left({\omega}_i+{\omega}_j+{\omega}_k\right)t-\left({\varphi}_i+{\varphi}_j+{\varphi}_k\right)\right]\right.\hfill \\ {}\left.+ \cos \left[\left({\omega}_i-{\omega}_j-{\omega}_k\right)t-\left({\varphi}_i-{\varphi}_j-{\varphi}_k\right)\right]+ \cos \left[\left({\omega}_i-{\omega}_j+{\omega}_k\right)t-\left({\varphi}_i-{\varphi}_j+{\varphi}_k\right)\right]\right\}\hfill \end{array} $$
(22‐5)

Then:

$$ E\left[{u}_i{u}_j\right]=0 $$
(23‐1)
$$ \begin{array}{ccc}\hfill E\left[{u}_i^3\right]=\left\{\begin{array}{l}0\\ {}{a}_0^2 \cos \left({\varphi}_0\right)\end{array}\right.\hfill & \hfill \mathrm{when}\hfill & \hfill \begin{array}{l}{\omega}_i\ne 0\\ {}{\omega}_i=0\end{array}\hfill \end{array} $$
(23‐2)
$$ \begin{array}{ccc}\hfill E\left[{u}_i^2\right]=\left\{\begin{array}{c}\hfill \frac{1}{2}{a}_i^2\hfill \\ {}\hfill {a}_0^2\hfill \\ {}\hfill 0\hfill \end{array}\right.\hfill & \hfill \mathrm{when}\hfill & \hfill \begin{array}{l}{\omega}_i\ne 0\\ {}{\omega}_i=0\\ {} others\end{array}\hfill \end{array} $$
(23‐3)
$$ \begin{array}{ccc}\hfill E\left[{u}_i^2{u}_j\right]=\left\{\begin{array}{l}\frac{1}{4}{a}_i^2{a}_j \cos \left(2{\varphi}_i-{\varphi}_j\right)\\ {}\frac{1}{2}{a}_i^2{a}_0 \cos \left({\varphi}_0\right)\\ {}0\end{array}\right.\hfill & \hfill \mathrm{when}\hfill & \hfill \begin{array}{l}2{\omega}_i-{\omega}_j=0\\ {}{\omega}_i=0\\ {} others\end{array}\hfill \end{array} $$
(23‐4)
$$ \begin{array}{ccc}\hfill E\left[{u}_i{u}_j{u}_k\right]=\left\{\begin{array}{l}\frac{1}{4}{a}_i{a}_j{a}_k \cos \left({\varphi}_i+{\varphi}_j-{\varphi}_k\right)\\ {}0\end{array}\right.\hfill & \hfill \mathrm{when}\hfill & \hfill \begin{array}{l}{\omega}_i+{\omega}_j-{\omega}_k=0\\ {} others\end{array}\hfill \end{array} $$
(23‐5)

Thus:

$$ {\gamma}_{FVa}=\frac{{\displaystyle \sum_{\omega_i+{\omega}_j={\omega}_k}\frac{3}{2}{a}_i{a}_j{a}_k \cos \left({\varphi}_i+{\varphi}_j-{\varphi}_k\right)+{\displaystyle \sum_{2{\omega}_i={\omega}_j}\frac{3}{4}{a}_i^2{a}_j \cos \left(2{\varphi}_i-{\varphi}_j\right)}+{\displaystyle \sum_{i=1}\frac{3}{2}{a}_i^2{a}_0 \cos \left({\varphi}_0\right)+{a}_0^3 \cos }}\left({\varphi}_0\right)}{{\left({a}_0^2+\frac{1}{2}{\displaystyle \sum_{i=1}^N{a}_i^2}\right)}^{3/2}} $$
(24)

N is the total number of the tidal constituents which satisfies the relationship of ω i  + ω j  = ω k or 2ω i  = ω j .

For the TDA, the water elevation at a Sta. is expressed as:

$$ \eta ={\displaystyle \sum_{i=0}^M{\eta}_i=}{\displaystyle \sum_{i=0}^M{a}_i \cos}\left({\omega}_it-{\varphi}_i\right) $$
(25)

where a, ω, and φ are the water surface elevation’s amplitude, frequency, and phase of the tidal constituents. The skewness is

$$ \gamma =\frac{E\left[{\varsigma}^3\right]}{{\left(E\left[{\varsigma}^2\right]\right)}^{3/2}} $$
(26)

where ζ is the acceleration of water elevation, \( \zeta =\frac{d\eta }{dt} \).

$$ {\gamma}_{TDA}=\frac{E\left[{\zeta}^3\right]}{{\left(E\left[{\zeta}^2\right]\right)}^{3/2}}=\frac{{\displaystyle \sum_{\omega_i+{\omega}_j={\omega}_k}\frac{3}{2}{a}_i{\omega}_i{a}_j{\omega}_j{a}_k{\omega}_k \sin \left({\varphi}_i+{\varphi}_j-{\varphi}_k\right)+{\displaystyle \sum_{2{\omega}_i={\omega}_j}\frac{3}{4}{a}_{i^2}{\omega}_{i^2}{a}_j{\omega}_j \sin }}\left(2{\varphi}_i-{\varphi}_j\right)}{{\left(\frac{1}{2}{\displaystyle \sum_{i=1}^N{a}_i^2{\omega}_i^2}\right)}^{3/2}} $$
(27)

For the FDA, the skewness calculation is applied to the acceleration of flow velocity and the similar result is obtained:

$$ {\gamma}_{FDA}=\frac{E\left[{\chi}^3\right]}{{\left(E\left[{\chi}^2\right]\right)}^{3/2}}=\frac{{\displaystyle \sum_{\omega_i+{\omega}_j={\omega}_k}\frac{3}{2}{a}_i{\omega}_i{a}_j{\omega}_j{a}_k{\omega}_k \sin \left({\varphi}_i+{\varphi}_j-{\varphi}_k\right)+{\displaystyle \sum_{2{\omega}_i={\omega}_j}\frac{3}{4}{a}_{i^2}{\omega}_{{}_i}^2{a}_j{\omega}_j \sin }}\left(2{\varphi}_i-{\varphi}_j\right)}{{\left(\frac{1}{2}{\displaystyle \sum_{i=1}^N{a}_i^2{\omega}_i^2}\right)}^{3/2}} $$
(28)

where \( \chi =\frac{du}{dt} \) and a and ω and φ are the velocity amplitude, frequency, and phase of the tidal constituents.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, W., Schuttelaars, H. & Zhang, H. Tidal asymmetry in a funnel-shaped estuary with mixed semidiurnal tides. Ocean Dynamics 66, 637–658 (2016). https://doi.org/10.1007/s10236-016-0943-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-016-0943-1

Keywords

Navigation