Skip to main content

Advertisement

Log in

Diagnosing vertical motion in the Equatorial Atlantic

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

Estimating the vertical velocity (w) in the oceanic upper-layers is a key issue for understanding the cold tongue development in the Eastern Equatorial Atlantic. In this methodological paper, we develop an expanded and general formulation of the vertical velocity equation based on the primitive equation (PE) system, in order to gain new insight into the physical processes responsible for the Equatorial and Angola upwellings. This approach is more accurate for describing the real ocean than simpler considerations based on just the wind-driven patterns of surface layer divergence. The w-sources/forcings are derived from the PE w-equation and diagnosed from a realistic ocean simulation of the Equatorial Atlantic. Sources of w are numerous and express the high complexity of terms related to the turbulent momentum flux, to the circulation and to the mass fields, some of them depending explicitly on w and others not. The equatorial upwelling is found to be mainly induced by the (i) the zonal turbulent momentum flux, (ii) the curl of turbulent momentum flux and (iii) the imbalance between the circulation and the pressure fields. The Angola upwelling in the eastern part of the basin is controlled by strong curl of turbulent momentum flux. A strong cross-regulation is evidenced between the w-forcings independent of w and dependent on w, which suggests an equatorial balanced-dynamics. The w-forcing depending on w represents the negative feedback of the ocean to the w-forcing independent of w: in the equatorial band, this adjustment is led by non-linear processes and by vortex stretching outside.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Adamec D, O’Brien J (1978) The seasonal upwelling in the Gulf of Guinea due to remote forcing. J Phys Oceanogr 8:1050–1060

    Article  Google Scholar 

  • Andrié C, Oudot C, Genthon C, Merlivat L (1986) CO2 fluxes in the tropical Atlantic during FOCAL cruises. J Geophys Res 91(C10):11,741–11,755

    Article  Google Scholar 

  • Arnault S (1987) Tropical Atlantic geostrophic currents and ship drifts. J Phys Oceanogr 18:1050–1060

    Google Scholar 

  • Athie G, Marin F (2008) Cross-equatorial structure and temporal modulation of intraseasonal variability at the surface of the tropical Atlantic Ocean. J Geophys Res 113:C08020. doi:10.1029/2007JC004,332

    Article  Google Scholar 

  • Bakun A, Nelson C (1991) The seasonal cycles of wind-stress curl in subtropical eastern boundary current regions. J Phys Oceanogr 21:1815–1834

    Article  Google Scholar 

  • Blanke B, Delecluse P (1993) Low frequency variability of the tropical ocean simulated by a general circulation model with mixed layer physics. J Phys Oceanogr 23:1363–1388

    Article  Google Scholar 

  • Bougeault P, Lacarrère P (1989) Parameterization of orography-induced turbulence in a meso-beta scale model. Mon Weather Rev 117:1872–1890

    Article  Google Scholar 

  • Bourlès B, Brandt P, Caniaux G, Dengler M, Gouriou Y, Key E, Lumpkin R, Marin F, Molinari R, Schmid C (2007) African Monsoon Multidisciplinary Analysis (AMMA): special measurements in the Tropical Atlantic. CLIVAR Newsletter Exchanges 41:7–9

    Google Scholar 

  • Bourlès B, D’Orgeville M, Eldin G, Gouriou Y, Chuchla R, DuPenhoat Y (2002) On the evolution of the thermocline and subthermocline eastward currents in the Equatorial Atlantic. Geophys Res Lett 29:16. doi:10.1029/2002GL015,098

    Article  Google Scholar 

  • Bourlès B, Gouriou Y, Chuchla R (1999) On the circulation in the upper layer in the western equatorial Atlantic. J Geophys Res 104(C9):21151–21170

    Article  Google Scholar 

  • Boyer Montégut C, Madec G, Fischer A, Ludicone ALD (2004) Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J Geophys Res 109. doi:10.1029/2004JC002,378

    Google Scholar 

  • Brandt P, Schott FA, Provost C, Kartavtseff A, Hormann V, Bourlès B, Fischer J (2006) Circulation in the central equatorial Atlantic: mean and intraseasonal to seasonal variability. Geophys Res Abstr 33:L07609. doi:10.1029/2005GL025498

    Google Scholar 

  • Bryden H, Brady E (1985) Diagnostic model of the three-dimensional circulation in the upper Equatorial Pacific Ocean. J Phys Oceanogr 15:1255–1273

    Article  Google Scholar 

  • Bunge L, Provost C, Kartavtseff A (2007) Variability in horizontal current velocities in the central and eastern Equatorial Atlantic in 2002. J Geophys Res 112:C02014. doi:10.1029/2006JC003,704

    Article  Google Scholar 

  • Burgers G, Balmaseda M, Vossepoel F, Oldenborgh GV, Leeuwen PV (2002) Balanced ocean-data assimilation near equator. J Phys Oceanogr 32:2509–2519

    Article  Google Scholar 

  • Caniaux G, Giordani H, Redelsperger J, Guichard F, Key E, Wade M (2011) Coupling between the Atlantic Cold Tongue and the West African Monsoon in Boreal Spring and Summer. J Geophys Res 116:C04003. doi:10.1029/2010JC006,570

    Article  Google Scholar 

  • Caniaux G, Planton S (1998) A 3D ocean mesoscale simulation using data from the SEMAPHORE experiment: mixed layer heat budget. J Geophys Res 103:2581–2599

    Article  Google Scholar 

  • Colin C (1989) Sur la variabilité dans le Golfe de Guinée. Nouvelles considérations sur les mécanismes d’upwelling. Ph.D. thesis, Muséum National d’Histoire Naturelle de Paris

  • Colin C (1991) Sur les upwellings équatorial et côtier (5o n) dans le Golfe de guinée. Oceanol Acta 14(3):223–240

    Google Scholar 

  • Colin C, Rotshi H (1970) Aspects géostrophiques de la circulation est-ouest dans l’Océan Pacifique équatorial occidental. C R Acad Sci 271:929–932

    Google Scholar 

  • Cromwell T (1953) Circulation in a meridional plane in the Central Equatorial Pacific. J Mar Res 12:196–213

    Google Scholar 

  • Davies-Jones R (1991) The frontodenetical forcing of secondary circulations. Part I: The duality and generalization of the Q-vector. J Atmos Sci 48:497–509

    Article  Google Scholar 

  • De Coëtlogon G, Janicot S, Lazar A (2010) Intraseasonal variability of the ocean-atmosphere coupling in the Gulf of Guinea during boreal spring and summer. Quart J Roy Meteor Soc 109:C120031. doi:10.1029/2004JC002378

    Google Scholar 

  • Delcroix T, Picaut J, Eldin G (1991) Equatorial Kelvin and Rossby waves evidenced in the Pacific Ocean through Geosat Sea Level and surface current anomalies. J Geophys Res 96:3249–3262

    Article  Google Scholar 

  • Doi T, Tozuka T, Sasaki H, Masumoto Y, Yamagata T (2007) Seasonal and interannual variations of oceanic conditions in the Angola Dome. J Phys Oceanogr 37:2698–2713. doi:10.1175/2007JPO3552.1

    Article  Google Scholar 

  • DuPenhoat Y, Treguier A (1985) The seasonal linear response of the tropical atlantic ocean. J Phys Oceanogr 15(3):316–329

    Article  Google Scholar 

  • Foltz G, Grodsky S, JA, Carton McPhaden M (2003) Seasonal mixed layer heat budget of the tropical Atlantic Ocean. J Geophys Res 108(C5):3146–3159. doi:10.1029/2002JC001,584

    Article  Google Scholar 

  • Gaspar P, Grégoris Y, Lefevre J (1990a) A simple eddy kinetic energy model for simulations of the oceanic vertical mixing: tests at Station Papa aned long-term upper ocean study site. J Geophys Res 95:16179–16193

    Article  Google Scholar 

  • Giordani H, Caniaux G, Prieur L (2005a) A simplified oceanic model assimilating geostrophic currents: application to the POMME experiment. J Phys Oceanogr 35:628–644

    Article  Google Scholar 

  • Giordani H, Caniaux G, Prieur L, Paci A, Giraud S (2005b) A one year mesoscale simulation of the Northeast Atlantic: mixed layer heat and mass budgets during the POMME experiment. J Geophys Res 110:C07S08. doi:10.1029/2004JC002,765

    Article  Google Scholar 

  • Giordani H, Prieur L, Caniaux G (2006) Advanced insights into sources of vertical velocity in the ocean. Ocean Dyn 56. doi:10.1007/s10,236–005–0050–1

    Article  Google Scholar 

  • Gouriou Y, Reverdin G (1992) Isopycnal and diapycnal circulation of the Upper Equatorial Atlantic Ocean in 1983–1984. J Geophys Res 97(C3):3543–3572

    Article  Google Scholar 

  • Gu G, Adler R (2004) Seasonal evolution and variability associated with the West african monsoon system. J Climate 17. doi:10.1175/1520–0442(2004)017

    Article  Google Scholar 

  • Hagos S, Cook K (2009) Development of a coupled regional model and its application to the study of interactions between the West African monsoon and the eastern tropical Atlantic ocean. J Climate 18. doi:10.1029/2006JC003,931

    Google Scholar 

  • Hastenrath S, Lamb P (1978) On the dynamics and climatology of surface flow over the equatorial oceans. Tellus 30:436–448

    Article  Google Scholar 

  • Hazeleger W, Haarsma R (2005) Sensitivity of tropical Atlantic climate to mixing in a coupled ocean–atmosphere model. Clim Dyn 25:387–399

    Article  Google Scholar 

  • Holton J (1992) An introduction to dynamic meteorology, 3rd edn. Academic, San Diego, p 511

    Google Scholar 

  • Hormann V, Brandt P (2007) Atlantic Equatorial Undercurrent and associated cold tongue variability. J Geophys Res 112:C06017. doi:10.1029/2006JC003,931

    Article  Google Scholar 

  • Josse, P (1999) Modélisation couplée Océan-Atmosphère à méso-échelle: application à la campagne SEMAPHORE. PhD thesis, Université Paul Sabatier, Toulouse

  • Jouanno J, Marin F,DuPenhoat Y,Moline JM, SheinbaumJ (2011) Seasonal modes of surface cooling in the Gulf of Guinea. J Phys Oceanogr. doi:10.1175/JPO-D-11-031.1 (in press)

  • Kantha L, Clayson C (1994) An improved mixed layer model for geosphysical applications. J Geophys Res 25:235–266

    Google Scholar 

  • Kelly B, O’Brien SMJ (1994) On a generating mechanism for Yanai waves and the 25-day oscillation. J Geophys Res 100(C6):10589–10612

    Article  Google Scholar 

  • Klein P, Lapeyre G, Large W (2004) Wind ringing of the ocean in presence of mesoscale eddies. Geophys Res Lett 31:L15306. doi:10.1029/2004GL020,274

    Article  Google Scholar 

  • Kolodziejczyk N, Bourlès B, Marin F, Grelet J, Chuchla R (2009) Seasonal variability of the Equatorial Undercurrent at 10o w as inferred from recent in situ observations. J Geophys Res 114:C06014. doi:10.1029/2008JC004,976

    Article  Google Scholar 

  • Large W, McWilliams J, Doney S (1994) Ocean vertical mixing: a review and a model with nonlocal boundary layer parameterization. Rev Geophys 32:363–403

    Article  Google Scholar 

  • Lefèvre N, Guillot A, Beaumont L, Danguy T (2008) Variability of fCO2 in the Eastern Tropical Atlantic from a moored buoy. J Geophys Res 113:C01015. doi:10.1029/2007JC004,146

    Article  Google Scholar 

  • Lemasson L, Rebert J (1968) Observations de courants sur le plateau continental ivoirien: mise en évidence d’un sous-courant. Doc Sci Prov 022:1–66

    Google Scholar 

  • Leslie L, Miles G, Gauntlett D (1981) The impact of FGGE data coverage and improved numerical techniques in numerical weather prediction in the Australian region. Q J R Meteorol Soc 107:627–642

    Article  Google Scholar 

  • Lumpkin R, Garzoli S (2005) Near-surface circulation in the tropical Atlantic ocean. Deep-Sea Res 52:495–518. doi:10.1016/j.dsr.2004.09.001

    Google Scholar 

  • Madec G, Delécluse P, Imbard M, Lév, C (1998) OPA8.1 Ocean general circulation model reference manual. Tech. rep., LOCEAN, Université P. et M. Curie, B102 T15-E5, 4 place Jussieu, Paris cedex 5

  • Marin F, Caniaux G, Bourlès B, Giordani H, Gouriou Y, Key E (2009) Why were sea surface temperature so different in the Eastern Equatorial Atlantic in June 2005 and 2006? J Phys Oceanogr 39:1416–1431

    Article  Google Scholar 

  • Mazeika P (1968) Mean monthly sea surface temperatures and zonal anomalies of the tropical atlantic. In: Serial atlas of the marine environment, folio 16. Am. Geographical Soc., New York

  • Merle J, Fieux M, Hisard P (1980) Annual signal and interannual anomalies of sea surface temperature in the eastern equatorial Atlantic Ocean. Deep-Sea Res 26:77–101

    Google Scholar 

  • Moore D, Philander S (1976) Modelling of the tropical oceanic circulation. The Sea 6:319–361

    Google Scholar 

  • Nguyen H, Thorncroft C, Zhang C (2011) Guinean coastal rainfall of the West African monsoon. Quart J Roy Meteor Soc (in press)

  • Okumura Y, Xie S (2004) Interaction of the Atlantic Equatorial Cold Tongue and the African Monsoon. J Climate 17:3589–3602

    Article  Google Scholar 

  • Pagé C, Fillion L, Zwack P (2007) Diagnosing summertime mesoscale verticla motion: implications for atmospheric data assimilation. Mon Weather Rev 135:2076–2094

    Article  Google Scholar 

  • Panitz H, Speth P (1986) The influence of the surface wind-stress over the Equatorial Atlantic on oceanic upwelling processes during FGGE 1979. Oceanogr Trop 21:185–203

    Google Scholar 

  • Peter C, Hénaff ML, du Penhoat Y, Menkès C, Marin F, Vialard J, Caniaux G, Lazar A (2006) A model study of the seasonal mixed-layer heat budget in the Equatorial Atlantic. J Geophys Res 111:C06014. doi:10.1029/2005JC003,157

    Article  Google Scholar 

  • Philander S (1990) El-Niño, La Niña, and southern oscillation. Academic Press, p 293

  • Philander S, Pacanowski R (1981) Response of equatorial oceans to periodic forcing. J Geophys Res 86(C3):1903–1916

    Article  Google Scholar 

  • Picaut J (1983) Propagation of the seasonal upwelling in the Eastern Equatorial Atlantic. J Phys Oceanogr 13:77–101

    Article  Google Scholar 

  • Picaut J, Busalacchi A, McPhaden M, Camusat B (1990) Validation of the geostrophic method for estimating zonal currents at the equator from Geosat altimeter data. J Geophys Res 95(C3):3015–3024

    Article  Google Scholar 

  • Picaut J, Hayes S, McPhaden M (1989) Use of the geostrophic approximation to estimate time-varying zonal currents at the equator. J Geophys Res 94(C3):3228–3236

    Article  Google Scholar 

  • Raymond D (2006) Nonlinear balance on an equatorial beta plane. Q J R Meteorol Soc. doi:10.1002/qj.49712051,513

  • Räisänen, J (1997) Height tendency diagnostics using a generalized omega equation, the vorticity equation, and a nonlinear balance equation. Mon Weather Rev 125:497–509

    Article  Google Scholar 

  • Redelsperger J, Diedou A, Flamant C, Janicot S, Lebel T, Polcher J, Bourlès B, Caniaux G, Rosnay PD, Desbois M, Eymard L, Fontaine B, Ginoux IGK, Hoepffner M, Kane C, Law K, Mari C, Marticorena, B, Mougin E, Pelon J, Peugeot C, Prota A, Roux F, Sultan B, Akker EVD (2006) AMMA, une étude multidisciplinaire de la mousson Ouest-Africaine. La Météorologie 54:22–32

    Article  Google Scholar 

  • Rhein M, Dengler M, Sültenfuss J, Hummels R (2010) Upwelling and associated heat flux in the Equatorial Atlantic inferred from helium isotope disequilibrium. J Geophys Res 115(C08021):320–323. doi:10.1029/2009JC005,772

    Google Scholar 

  • Richardson P, Philander S (1987) The seasonal variations of surface currents in the Tropical Atlantic Ocean: a comparison of ship drift data with results from a general circulation model. J Geophys Res 92:715–724

    Article  Google Scholar 

  • Richardson P, Walsh D (1986) Mpping climatological seasonal variations of surface currents in the Tropical Atlantic using ship drifts. J Geophys Res 91(C9):10537–10550

    Article  Google Scholar 

  • Richter I, Xie S (2008) On the origin of equatorial Atlantic biases in coupled general circulation models. Clim Dyn 31(5):587–598

    Article  Google Scholar 

  • Saujani S, Shepherd T (2006) A unified theory of balance in the extratropics. J Fluid Mech 569:447–464. doi:10.1017/S0022112006002,783

    Article  Google Scholar 

  • Schott F, Dengler M, Brandt P, Affler K, Fischer J, Bourlès B, Gouriou Y, Molinari R, Rhein M (2003) The zonal currents and transports at 35r̂w in the tropical atlantic. J Geophys Res 30(7):1349. doi:10.1029/2002GL016,849

    Google Scholar 

  • Schott F, Fisher J, Stramma L (1998) Transport and pathways of the upper-layer circulation in the Western Tropical Atlantic. J Phys Oceanogr 28:1904–1928

    Article  Google Scholar 

  • Stommel H (1960) Wind-drift near the equator. Deep-Sea Res 6:298–302

    Google Scholar 

  • Stramma L, Schott F (1996) Western equatorial circulation and interhemispheric exchange. In: Krauss W (ed) The warmwatersphere of the North Atlantic Ocean. Gebr. Borntraeger, Berlin, Stuttgart, pp 195–227

    Google Scholar 

  • Stramma L, Schott F (1999) The mean flow field of the tropical atlantic ocean. Deep-Sea Res 46:279–303

    Article  Google Scholar 

  • Theiss J, Mohebalhojeh (2009) A The equatorial counterpart of thequasi-geostrophic model. J Fluid Mech 637:327–356. doi:10.1017/S0022112009008,052

    Article  Google Scholar 

  • Thorncroft C, Nguyen H, Zhang C, Peyrillé P (2011) Annual cycle of the West African monsoon: regional circulations and associated water vapour transport. Q J R Meteorol Soc. doi:10.1002/qj.728

  • Viùdez A, Tintoré J, Haney R (1996) About the nature of the generalized omega equation. J Atmos Sci 53:787–795

    Article  Google Scholar 

  • Voituriez B, Herbland A (1981) Primary production in the tropical Atlantic ocean mapped from the oxygen values of Equalant 1 and 2 (1963). Bull Mar Sci 31:853–863

    Google Scholar 

  • Wade M, Caniaux G, DuPenhoat Y, Dengler M, Giordani H, Hummels R (2010) A one-dimensional modeling study of the diurnal cycle in the equatorial Atlantic at the PIRATA buoys during the EGEE-3 campaign. Ocean Dyn 61:513–524. doi:10.1007/s10236–010–0337–8

    Google Scholar 

  • Wade M, Caniaux G, DuPenhoat Y (2011) Variability of the mixed layer heat budget in the eastern equatorial Atlantic during 2005–2007 as inferred using argo floats. J Geophys Res (in press)

  • Waliser D, Gautier C (1993) A satellite-derived climatology of the itcz. J Climate 6:2162–2174

    Article  Google Scholar 

  • Wauthy B (1963) Introduction à la climatologie du Golfe de Guinée. Oceanogr Trop 18(2):103–138

    Google Scholar 

  • Weingartner T, Weisberg R (1991a) On the annual cycle of equatorial upwelling in the Central Atlantic Ocean. J Phys Oceanogr 21:68–82

    Article  Google Scholar 

  • Weingartner T, Weisberg R (1991b) A description of the annual cycle in sea surface temperature and upper ocean heat in the Equatorial Atlantic. J Phys Oceanogr 21:83–96

    Article  Google Scholar 

  • Weisberg R, Tang T (1983) Equatorial ocean response to growing and moving wind systems with application to the Atlantic. J Mar Res 41:461–486. doi:10.1357/002224083788519,768

    Article  Google Scholar 

  • Zebiak S, Cane M (1987) A model El-Niño—southern oscillation. Mon Weather Rev 115:2262–2278

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the French programs AMMA-EGEE (GAME/INSU). This study was supported by the AMMA project. Based on a French initiative, AMMA was built by an international scientific group and is currently funded by a large number of agencies, including those in France, the UK, US and Africa. It has been the beneficiary of a major financial contribution from the European Community’s Sixth Framework Research Programme. Detailed information on scientific coordination and funding is available on the AMMA International website http://www.amma-international.org.

We thank the anonymous reviewer for his/her careful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hervé Giordani.

Additional information

Responsible Editor: Dirk Olbers

Appendix: The Ekman theory

Appendix: The Ekman theory

The use of the Ekman assumptions in the primitive equation system leads us to consider the forcings involving the turbulent momentum flux and the Coriolis parameter only, and to neglect the non-linear forcings in Eq. 8. In consequence, system (9) reduces to five terms, out of 11, which are \(F_{\tau_x}\), F rotτ , F divτ involving the turbulent momentum flux, the advection of planetary vorticity F v regarding the external forcings and the linear form of the stretching term \(F_{stretch\zeta}=\left(f^2 \frac{\partial w}{\partial z}\right)\) regarding the internal forcing. Therefore the Ekman hypotheses simplifies the vertical velocity Eq. 8 to the following expression:

$$ \begin{aligned} & \frac{\partial w(-z)}{\partial t} +f^2 \int_0^t w(-z) dt \\ &{\kern6pt}=\int_0^t\int_{-z}^0 \left(-2\beta {fv} -\beta \frac{\partial \tau_x}{\partial z} + f{\bf k}{\boldmath\nabla}\times\left(\frac{\partial {\boldmath\tau}}{\partial z}\right)\right)dzdt\\ &{\kern12pt}+\int_{-z}^0\left(\frac{\partial {\boldmath\nabla} {\boldmath\tau}}{\partial z}\right)dz \label{dwdt_ekman_eq} \end{aligned} $$
(14)

The vertical velocity at depth “z” and at current time “t” is obtained after the vertical (z) and temporal (t) integration of Eq. 14. Zebiak and Cane (1987) developed an expression for the equatorial Ekman pumping by introducing a Rayleigh friction in their shallow water model to obtain a steady state solution over a period of 2 days called T adj here. Under this condition, Eq. 14 is integrated over the period T adj to provide the similar stationarized expression of the Ekman pumping which is written as follows:

$$ \left\{ \begin{array}{@{}l} w(-z)=\dfrac{1}{\left( F_{adj}^2+f^2 \right)} \left(\int_{-z}^0 \left(-2\beta {fv} \right) dz -\beta \tau_{xs} \right. \\ \qquad\qquad\qquad\qquad\qquad\left.+f{\bf k}{\boldmath\nabla}\times {\boldmath\tau}_s +F_{adj} {\boldmath\nabla} {\boldmath\tau}_s \vphantom{\int_{-z}^0}\right)\!\!\!\!\!\\ \\ v=\dfrac{F_{adj} \tau_{ys}}{h\left(F_{adj}^2+f^2\right)} \mbox{where}\;\; h\;\; \mbox{is the Ekman depth}\!\!\!\!\\ \qquad \mbox{and} \boldmath\tau_s=(\tau_{xs},\tau_{ys}) \mbox{is the surface wind-stress}\!\!\!\! \end{array} \right. \label{w_ekman_eq} $$
(15)

It is important to note that Eq. 15 assumes that the Ekman pumping reaches a stationary regime at the time scale T adj , which is viewed as an equatorial adjustment frequency (F adj  = 1/T adj ) while the more general expressions (8) and (14) are free from this assumption.

If we assume now that the external forcing reduces to the stress curl \(\left(F_{ext}= f{\bf k}{\boldmath\nabla}\times\left(\frac{\partial {\boldmath\tau}} {\partial z}\right) \right)\) and exactly balances \(\left(\frac{\partial w}{\partial t}=0\right)\), at all times, the internal forcing reduced to the stretching term \(F_{stretch \zeta}=\left(f^2\frac{\partial w}{\partial z}\right)\) (because f > > ζ), then we obtain the well-known, classic, Ekman pumping of midlatitudes \(\left(\frac{\partial w}{\partial z}=-\frac{1}{f}{\boldmath\nabla}\times \left(\frac{\partial {\boldmath\tau}}{\partial z}\right)\right)\). In fact, F int (w) is a negative feedback to F ext which gave birth to F int (w) and thus cancels the tendency term \(\left(\frac{\partial w(-z)}{\partial t}\right)\).

Finally, this demonstration shows that the expanded version of the vertical velocity Eq. 8 includes the Ekman theory.

Starting again from the expanded Eq. 8 for the vertical velocity, it is possible to propose a more general expression than Eq. 15 for the stationarized Ekman pumping. Now the Ekman assumptions are relaxed by taking into account all the 11 forcings listed in system (9) except the non-linear terms Tilt(ζ), Adv(D) and Def 2(D) in the forcing F NL . On the other hand, the assumption of stationarity at the frequency F adj is kept. Under these conditions, the following extended formulation of the stationarized Ekman pumping is derived:

$$ \left\{ \begin{array}{@{}l} w(-z)\\ {\kern12pt} =\frac{1}{\left( F_{adj}^2+f(\zeta+\Delta \zeta+f)-\beta \Delta u \right)}\\ {\kern18pt}\times\displaystyle\int_{-z}^0 \left(-2\beta {fv} +\frac{\beta}{\rho}\frac{\partial P}{\partial x} +f Baro(\zeta) \right) dz+ F_{adj}\\ {\kern18pt}\times\!\displaystyle\int_{-z}^0 \!\!\left(\!\!\mathit{Baro}(\!D)\!-\!Def_1(\!D) \!+\!\left(f\zeta\!-\!\beta u\right)\!-\!\frac{1}{\rho}\nabla^2\! P \!\right)\!dz\\ {\kern18pt}-\beta (\tau_{xs}-\tau_{xb}) +f{\bf k}{\boldmath\nabla}\times ({\boldmath\tau}_s-{\boldmath\tau}_b) \\ {\kern18pt}+F_{adj} {\boldmath\nabla}({\boldmath\tau}_s-{\boldmath\tau}_b) \end{array} \right. \label{w_ekman_eq_ext} $$
(16)

where Δζ, Δu and τ b are the vorticity and zonal current jumps and the turbulent momentum flux at depth “z”, respectively.

Since the right-hand-side terms are available from basic model outputs or gridded observations, the formulation (16) provides access to an estimation of the Ekman pumping but now in presence of a moving and heterogeneous ocean. This is not the case of Eq. 15, which assumes that the oceanic circulation derives from the surface wind-stress and the Coriolis force only. Note that expressions (15) and (16) also differ by their denominators (Γ) which can be seen as response-functions of the ocean for vertical motion. In expression (15), Γ depends only on the adjustment frequencies F adj and f while, in the extended expression (16), Γ also depends on the dynamics through the vorticity and zonal current.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giordani, H., Caniaux, G. Diagnosing vertical motion in the Equatorial Atlantic . Ocean Dynamics 61, 1995–2018 (2011). https://doi.org/10.1007/s10236-011-0467-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-011-0467-7

Keywords

Navigation