Skip to main content
Log in

Influence of high-resolution wind forcing on hydrodynamic modeling of the Gulf of Lions

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

The impact of the choice of high-resolution atmospheric forcing on ocean summertime circulation in the Gulf of Lions (GoL; Mediterranean Sea) is evaluated using three different datasets: AROME (2.5 km, 1 h), ALADIN (9.5 km, 3 h), and MM5 (9 km, 3 h). A short-term ocean simulation covering a 3-month summer period was performed on a 400-m configuration of the GoL. The main regional features of both wind and oceanic dynamics were well-reproduced by all three atmospheric models. Yet, at smaller scales and for specific hydrodynamic processes, some differences became apparent. Inertial oscillations and mesoscale variability were accentuated when high-resolution forcing was used. Sensitivity tests suggest a predominant role for spatial rather than temporal resolution of wind. The determinant influence of wind stress curl was evidenced, both in the representation of a mesoscale eddy structure and in the generation of a specific upwelling cell in the north-western part of the gulf.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Accadia C, Zecchetto S, Lavagnini A, Speranza A (2007) Comparison of 10-m wind forecasts from a regional area model and QuikSCAT Scatterometer wind observations over the Mediterranean Sea. Mon Weather Rev 135:1945–1960

    Article  Google Scholar 

  • Allou A, Forget P, Devenon JL (2010) Submesoscale vortex structures at the entrance of the Gulf of Lions in the Northwestern Mediterranean Sea. Cont Shelf Res 30(7):724–732

    Article  Google Scholar 

  • Andre G, Garreau P, Garnier V, Fraunie P (2005) Modelled variability of the sea surface circulation in the North Western Mediterranean Sea and in the Gulf of Lions. Ocean Dyn 55:294–308

    Article  Google Scholar 

  • Andre G, Garreau P, Fraunie P (2009) Mesoscale slope current variability in the Gulf of Lions. Interpretation of in situ measurements using a three dimensional model. Cont Shelf Res 29(2):407–423

    Article  Google Scholar 

  • Artale V, Calmanti S, Carillo A, Dell’Aquila A, Herrmann M, Pisacane G, Ruti P, Sannino G, Struglia M, Giorgi F, Bi X, Pal J, Rauscher S (2010) An atmosphere–ocean regional climate model for the Mediterranean area: assessment of a present climate simulation. Climate Dyn 35:721–740

    Article  Google Scholar 

  • Barton ED, Argote ML, Brown J, Kosro PM, Lavin M, Robles JM, Smith RL, Trasviña A, Velez HS (1993) Supersquirt: dynamics of the Gulf of Tehuantepec, Mexico. Oceanography 6:23–30

    Google Scholar 

  • Béranger K, Drillet Y, Houssais MN, Testor P, Bourdallé-Badie R, Alhammoud B, Bozec A, Mortier L, Bouruet-Aubertot P, Crépon M (2010) Impact of the spatial distribution of the atmospheric forcing on water mass formation in the Mediterranean Sea. J Geophys Res 115:C12041

    Article  Google Scholar 

  • Boniface K, Ducrocq V, Jaubert G, Yan X, Brousseau P, Masson F, Champollion C, Chery J, Doer-flinger E (2009) Impact of high-resolution data assimilation of GPS zenith delay on Mediterranean heavy rainfall forecasting. Ann Geophys 27(7):2739–2753

    Article  Google Scholar 

  • Brousseau P, Bouttier F, Hello G, Seity Y, Fischer C, Berre L, Montmerle T, Auger L, Malardel S (2008) A prototype convective-scale data assimilation system for operation: the Arome-RUC. HIRLAM Tech Rep 68:23–30

    Google Scholar 

  • Bubnova R, Hello G, Benard P, Geleyn J (1995) Integration of the fully elastic equations cast in the hydrostatic-pressure terrain-following coordinate in the framework of the ARPEGE/Aladin nwp system. Mon Weather Rev 123(2):515–535

    Article  Google Scholar 

  • Burchard H, Hofmeister R (2008) A dynamic equation for the potential energy anomaly for analysing mixing and stratification in estuaries and coastal seas. Estuar Coast Shelf Sci 77(4):679–687

    Article  Google Scholar 

  • Cavaleri L, Bertotti L (2004) Accuracy of the modelled wind and wave fields in enclosed seas. Tellus 56a:167–175

    Google Scholar 

  • Chavanne C, Flament P, Lumpkin R, Dousset B, Bentamy A (2002) Scatterometer observations of wind variations induced by oceanic islands: implications for wind-driven ocean circulation. Can J Remote Sens 28:466–474

    Article  Google Scholar 

  • Chelton DB, Schlax MG, Samelson RM (2007) Summertime coupling between sea surface temperature and wind stress in the California Current System. J Phys Oceanogr 37(3):495–517

    Article  Google Scholar 

  • Courtier P, Thepaut J, Hollingsworth A (1994) A strategy for operational implementation of 4D-VAR, using an incremental approach. Q J R Meteorol Soc 120:1367–1387

    Article  Google Scholar 

  • Crepon M, Richez C (1982) Transient upwelling generated by two-dimensional atmospheric forcing and variability in the coastline. J Phys Oceanogr 12:14371457

    Article  Google Scholar 

  • Davies A, Xing J (2004) Modelling processes influencing wind-induced internal wave generation and propagation. Cont Shelf Res 24(18):2245–2271

    Article  Google Scholar 

  • De Boer GJ, Pietrzak JD, Winterwerp JC (2008) Using the potential energy anomaly equation to investigate tidal straining and advection of stratification in a region of freshwater influence. Ocean Model 22(1–2):1–11

    Article  Google Scholar 

  • Dufois F, Garreau P, Le Hir P, Forget P (2008) Wave- and current-induced bottom shear stress distribution in the Gulf of Lions. Cont Shelf Res 28:1920–1934

    Article  Google Scholar 

  • Estournel C, Durrieu DeMadron X, Marsaleix P, Auclair F, Julliand C, Vehil R (2003) Observation and modelisation of the winter coastal oceanic circulation in the Gulf of Lions under wind conditions influenced by the continental orography (FETCH experiment). J Geophys Res 108(C3):8059

    Article  Google Scholar 

  • Estournel C, Auclair F, Lux M, Nguyen C, Marsaleix P (2009) "Scale oriented" embedded modeling of the North-Western Mediterranean in the frame of MFSTEP. Ocean Sci 5(2):73–90

    Article  Google Scholar 

  • Fennel W, Lass H (2007) On the impact of wind curls on coastal currents. J Mar Syst 68:128–142

    Article  Google Scholar 

  • Fischer C, Montmerle T, Berre L, Auger L, Stefanescu SE (2005) An overview of the variational assimilation in the ALADIN/France numerical weather-prediction system. Q J R Meteorol Soc 131:3477–3492

    Article  Google Scholar 

  • Flexas M, de Madron X, Garcia M, Canals M, Arnau P (2002) Flow variability in the Gulf of Lions during the MATER HFF experiment (March–May 1997). J Mar Syst 33:197–214

    Article  Google Scholar 

  • Garreau P, Garnier V, Schaefer A (2011) Eddy resolving modelling of the Gulf of Lions and Catalan Sea. Ocean Dynamics (in press)

  • Gatti J, Petrenko A, Devenon J, Leredde Y, Ulses C (2006) The Rhone river dilution zone present in the northeastern shelf of the Gulf of Lion in December 2003. Cont Shelf Res 26:17941805

    Article  Google Scholar 

  • Gill AE (1982) Atmosphere-ocean dynamics. London: Academic Press, p. 662

  • Gill AE (1984) On the behavior of internal waves in the wakes of storms. J Phys Oceanogr 14:1129–1151

    Article  Google Scholar 

  • Grell JDG, Stauffer D (1993) A Description of the Fifth-Generation Penn State/NCAR Mesoscale Model (MM5). Tech. rep., 398th ed., NCAR Tech. Notes, 117 pp.

  • Herrmann MJ, Somot S (2008) Relevance of ERA40 dynamical downscaling for modeling deep convection in the Mediterranean Sea. Geophysical Research Letters 35(4)

  • Herrmann M, Somot S, Sevault F, Estournel C, Deque M (2008) Modeling the deep convection in the northwestern Mediterranean Sea using an eddy-permitting and an eddy-resolving model: case study of winter 1986–1987. J Geophys Res-Oceans 113 (C4)

  • Hu ZY, Doglioli AM, Petrenko AA, Marsaleix P, Dekeyser I (2009) Numerical simulations of eddies in the Gulf of Lion. Ocean Model 28(4):203–208

    Article  Google Scholar 

  • Hua B, Thomasset F (1983) A numerical study of the effects of coastline geometry on wind-induced upwelling in the Gulf of Lions. J Phys Oceanogr 13(4):678–694

    Article  Google Scholar 

  • Huthnance J (2002) Wind-driven circulation in coastal and marginal seas. Can J Of Remote Sens 28:329–339

    Article  Google Scholar 

  • Isern-Fontanet J, Font J, Garcia-Ladona E, Emelianov M, Millot C, Taupier-Letage I (2004) Spatial structure of anticyclonic eddies in the Algerian basin (Mediterranean Sea) analyzed using the Okubo-Weiss parameter. Deep-Sea Res II 51:3009–3028

    Article  Google Scholar 

  • Jin X, Dong C, Kurian J, McWilliams JC, Chelton DB, Li Z (2009) SST–Wind Interactions in coastal upwelling: oceanic simulation with empirical coupling. J Phys Oceanogr 39(11):2957–2970

    Article  Google Scholar 

  • Jordi A, Wang DP (2009) Mean dynamic topography and eddy kinetic energy in the Mediterranean Sea: comparison between altimetry and a 1/16 degree ocean circulation model. Ocean Model 29(2):137–146

    Article  Google Scholar 

  • Lafore J, Stein J, Asencio N, Bougeault P, Ducrocq V, Duron J, Fischer C, Hereil P, Mascart P, Masson V, Pinty J, Redelsperger J, Richard E, de Arellano J (1998) The Meso-NH atmospheric simulation system. Part I: adiabatic formulation and control simulations. Ann Geophys 16:90–109

    Article  Google Scholar 

  • Langlais C, Barnier B, Molines J, Frauni P, Jacob D, Kotlarski S (2009) Evaluation of a dynamically downscaled atmospheric reanalyse in the prospect of forcing long term simulations of the ocean circulation in the Gulf of Lions. Ocean Model 30(4):270–286

    Article  Google Scholar 

  • Lazure P, Dumas F (2008) An external-internal mode coupling for a 3D hydrodynamical model for applications at regional scale (MARS). Adv Water Resour 31(2):233–250

    Article  Google Scholar 

  • Lebeaupin-Brossier CL, Ducrocq V, Giordani H (2009) Effects of the air-sea coupling time frequency on the ocean response during Mediterranean intense events. Ocean Dyn 59(4):539–549

    Article  Google Scholar 

  • Ludwig W, Meybeck M, Abousamra F (2003) Riverine transport of water, sediments, and pollutants to the Mediterranean Sea. UNEP MAP Technical Report, 141, 111

  • Luyten P, De Mulder T (1992) A module representative surface fluxes of momentum and heat. Technical report No 9 MAST-0050-C (Mumm), p. 30

  • Masson V, Seity Y (2009) Including atmospheric layers in vegetation and urban offline surface schemes. J Appl Meteorol Climatol 48(7):1377–1397

    Article  Google Scholar 

  • McCreary J, Lee H, Enfield D (1989) The response of the coastal ocean to strong offshore winds—with application to circulations in the gulf-of-Tehuantepec and Papagayo. J Mar Res 47(1):81–109

    Article  Google Scholar 

  • Millot C (1979) Wind induced upwellings in the Gulf of Lions. Oceanol Acta 2:261–274

    Google Scholar 

  • Millot C (1990) The Gulf of Lions’ hydrodynamics. Cont Shelf Res 10(9–11):885–894

    Article  Google Scholar 

  • Millot C (1999) Circulation in the Western Mediterranean Sea. J Mar Syst 20(1–4):423–442

    Article  Google Scholar 

  • Millot C, Crepon M (1981) Inertial oscillations on the continental shelf of the Gulf of Lions—observations and theory. J Phys Oceanogr 11(5):639–657

    Article  Google Scholar 

  • Millot C, Wald L (1980) The effect of Mistral wind on the Ligurian current near Provence. Oceanol Acta 3:399–402

    Google Scholar 

  • Nicolle A, Garreau P, Liorzou B (2009) Modelling for anchovy recruitment studies in the Gulf of Lions (Western Mediterranean Sea). Ocean Dyn 59:953–968

    Article  Google Scholar 

  • Pacanowski R, Philander S (1981) Parametrization of vertical mixing in numerical-model of tropical oceans. J Phys Oceanogr 11:1443–1451

    Article  Google Scholar 

  • Petrenko A (2003) Variability of circulation features in the Gulf of Lions NW Mediterranean Sea: importance of inertial current. Oceanol Acta 26:323–338

    Article  Google Scholar 

  • Petrenko A, Leredde Y, Marsaleix P (2005) Circulation in a stratified and wind-forced Gulf of Lions, NW Mediterranean Sea: in situ and modelling data. Cont Shelf Res 25:7–27

    Article  Google Scholar 

  • Petrenko A, Dufau C, Estournel C (2008) Barotropic eastward currents in the western Gulf of Lion, north-western Mediterranean Sea, during stratified conditions. J Mar Syst 74:406–428

    Article  Google Scholar 

  • Pickett M, Paduan J (2003) Ekman transport and pumping in the California Current based on the U.S. Navy’s high-resolution atmospheric model (COAMPS). J Geophys Res Oceans 108(10):3327

    Article  Google Scholar 

  • Pinardi N, Allen I, Demirov E, De Mey P, Korres G, Lascaratos A, Le Traon PY, Maillard C, Manzella G, Tziavos C (2003) The Mediterranean ocean forecasting system: first phase of implementation (1998–2001). Ann Geophys 21:3–20

    Article  Google Scholar 

  • Pujol M, Larnicol G (2005) Mediterranean sea eddy kinetic energy variability from 11 years of altimetric data. J Mar Syst 58(3–4):121–142

    Article  Google Scholar 

  • Rousset C, Houssais MN, Chassignet EP (2009) A multi-model study of the restratification phase in an idealized convection basin. Ocean Model 26:115–133

    Article  Google Scholar 

  • Rubio A, Arnau P, Espino M, Flexas M, Jorda G, Salat J, Puigdefabregas J, Arcilla A (2005) A field study of the behaviour of an anticyclonic eddy on the Catalan continental shelf (NW Mediterranean). Prog Oceanogr 66(2–4):142–156

    Article  Google Scholar 

  • Rubio A, Barnier B, Jorda G, Espino M, Marsaleix P (2009a) Origin and dynamics of mesoscale eddies in the Catalan Sea (NW Mediterranean): insight from a numerical model study. J Geophys Res Oceans 114:C06009

    Article  Google Scholar 

  • Rubio A, Taillandier V, Garreau P (2009b) Reconstruction of the Mediterranean northern current variability and associated cross-shelf transport in the Gulf of Lions from satellite-tracked drifters and model outputs. J Mar Syst 78:S63–S78

    Article  Google Scholar 

  • Ruti P, Marullo S, D’Ortenzio F, Tremant M (2008) Comparison of analyzed and measured wind speeds in the perspective of oceanic simulations over the Mediterranean basin: analyses, QuikSCAT and buoy data. J Mar Syst 70:33–48

    Article  Google Scholar 

  • Seity Y, Brousseau P, Malardel S, Hello G, Bénard P, Bouttier F, Lac C, Masson V (2011) The AROME-France convective scale operational model. Mon Wea Rev 139:976–991

    Article  Google Scholar 

  • Simpson J, Bowers D (1981) Models of stratification and frontal movement in shelf seas. Deep Sea Res A 28(7):727–738

    Article  Google Scholar 

  • Smagorinsky J (1963) General circulation experiments with the primitive equation. I. The basic experiment. Mon Weather Rev 111:99–165

    Article  Google Scholar 

  • Tintore J, Wang D, Garcia E, Viudez A (1995) Near-inertial motions in the coastal ocean. J Mar Syst 6(4):301–312

    Article  Google Scholar 

  • Tonani M, Pinardi N, Fratianni C, Pistoia J, Dobricic S, Pensieri S, de Alfonso M, et Nittis K (2009) Mediterranean Forecasting System: forecast and analysis assessment through skill scores. Ocean Sci 5(4):649–660

    Article  Google Scholar 

  • Trasvina A, Barton ED (2008) Summer circulation in the Mexican tropical Pacific. Deep Sea Res I 55(5):587–607

    Article  Google Scholar 

  • Trasvina A, Ortiz-Figueroa M, Herrera H, Cosio M, Gonzalez E (2003) ‘Santa Ana’ winds and upwelling filaments of Northern Baja California. Dyn Atmos Oceans 37(2):113–129

    Article  Google Scholar 

  • Trasviña A, Barton E, Brown J, Velez H, Kosro P, Smith R (1995) Offshore wind forcing in the Gulf of Tehuantepec, Mexico: the asymmetric circulation. J Geophys Res 100(10):20649–20663

    Article  Google Scholar 

  • Ulses C, Grenz C, Marsaleix P, Schaaf E, Estournel C, Meule S, Pinazo C (2005) Circulation in a semi-enclosed bay under influence of strong freshwater input. J Mar Syst 56:113–132

    Article  Google Scholar 

  • Ulses C, Estournel C, Bonnin J, de Madron XD, Marsaleix P (2008) Impact of storms and dense water cascading on shelf-slope exchanges in the Gulf of Lion (NW Mediterranean). J Geophys Res-Oceans 113(C2)

  • Yoshida S, Qiu B, Hacker P (2010) Wind-generated eddy characteristics in the lee of the island of Hawaii. J Geophys Res Oceans 115:C03019

    Article  Google Scholar 

Download references

Acknowledgments

The research was supported by IFREMER and Météo-France in the framework of a PhD grant and by GIRAC Pôle Mer project. The authors would like to thank ACRI ST for managing the MM5 configuration and gratefully acknowledge the Medchange program and, in particular, Nathaniel Bensoussan for providing the Riou temperature time series. Most of the simulations were run using IFREMER computation facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amandine Schaeffer.

Additional information

Responsible Editor: Phil Peter Dyke

This article is part of the Topical Collection on Joint Numerical Sea Modelling Group Workshop 2010

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schaeffer, A., Garreau, P., Molcard, A. et al. Influence of high-resolution wind forcing on hydrodynamic modeling of the Gulf of Lions. Ocean Dynamics 61, 1823–1844 (2011). https://doi.org/10.1007/s10236-011-0442-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-011-0442-3

Keywords

Navigation