Skip to main content

Advertisement

Log in

A three-dimensional surface wave–ocean circulation coupled model and its initial testing

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

A theoretical framework to include the influences of nonbreaking surface waves in ocean general circulation models is established based on Reynolds stresses and fluxes terms derived from surface wave-induced fluctuation. An expression for the wave-induced viscosity and diffusivity as a function of the wave number spectrum is derived for infinite and finite water depths; this derivation allows the coupling of ocean circulation models with a wave number spectrum numerical model. In the case of monochromatic surface wave, the wave-induced viscosity and diffusivity are functions of the Stokes drift. The influence of the wave-induced mixing scheme on global ocean circulation models was tested with the Princeton Ocean Model, indicating significant improvement in upper ocean thermal structure and mixed layer depth compared with mixing obtained by the Mellor–Yamada scheme without the wave influence. For example, the model–observation correlation coefficient of the upper 100-m temperature along 35° N increases from 0.68 without wave influence to 0.93 with wave influence. The wave-induced Reynolds stress can reach up to about 5% of the wind stress in high latitudes, and drive 2–3 Sv transport in the global ocean in the form of mesoscale eddies with diameter of 500–1,000 km. The surface wave-induced mixing is more pronounced in middle and high latitudes during the summer in the Northern Hemisphere and in middle latitudes in the Southern Hemisphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ardhuin F, Jenkins AD (2006) On the interaction of surface waves and upper ocean turbulence. J Phys Oceanogr 36:551–557

    Article  Google Scholar 

  • Anis A, Moum JN (1995) Surface wave–turbulence interactions: scaling ε(z) near the sea surface. J Phys Oceanogr 25:2025–2045

    Article  Google Scholar 

  • Babanin AV (2006) On a wave-induced turbulence and a wave-mixed upper ocean layer. Geophys Res Lett 33:L20605. doi:10.1029/2006GL027308

    Article  Google Scholar 

  • Babanin AV, Haus BK (2009) On the existence of water turbulence induced by non-breaking surface waves. J Phys Oceanogr 39(10):2675–2679. doi:10.1175/2009JPO4202.1

    Article  Google Scholar 

  • Blumberg AF, Mellor GL (1987) A description of a three-dimensional coastal ocean circulation model. In: Heaps NS (ed) Three-dimensional coastal ocean models, vol 4. American Geophysical Union, Washington, pp 1–16

    Google Scholar 

  • Burchard H (2001) Simulating waves-enhanced layer under breaking surface waves with two-equation turbulence models. J Phys Oceanogr 31:3133–3145

    Article  Google Scholar 

  • Craig PD, Banner ML (1994) Modeling wave-enhanced turbulence in the ocean surface layer. J Phys Oceanogr 24:2546–2559

    Article  Google Scholar 

  • da Silva AM, Young CC, Levitus S (1994a) Atlas of surface marine data 1994, volume 3, anomalies of heat and momentum fluxes, NOAA Atlas NESDIS 8. US Department of Commerce, NOAA, NESDIS, 411

  • da Silva AM, Young CC, Levitus S (1994b) Atlas of surface marine data 1994, volume 4, anomalies of fresh water fluxes, NOAA Atlas NESDIS 9. US Department of Commerce, NOAA, NESDIS, 308

  • Donelan M, Yuan Y (1994) Wave dissipation by surface processes. In: Komen GJ, Cavaleri L, Donelan M et al (eds) Dynamics and modelling of ocean waves. Cambridge University Press, Cambridge, pp 143–155

    Google Scholar 

  • Ezer T (2000) On the seasonal mixed layer simulated by a basin-scale ocean model and the Mellor–Yamada turbulence scheme. J Geophys Res 105(C7):16843–16855

    Article  Google Scholar 

  • Haidvogel DB, Arango H, Hedstrom K, Beckmann A, Malanotte-Rizzoli P, Shchepetkin AF (2000) Model evaluation experiments in the North Atlantic basin: simulations in non-linear terrain-following coordinates. Dyn Atmos Oceans 32:239–282

    Article  Google Scholar 

  • Haney R (1971) Surface thermal boundary condition for ocean circulation models. J Phys Oceanogr 1:241–248

    Article  Google Scholar 

  • Huang C, Qiao F (2010) Wave–turbulence interaction and its induced mixing in the upper ocean. J Geophys Res 115:C04026. doi:10.1029/2009JC005853

    Article  Google Scholar 

  • Jacobs CA (1978) Numerical simulation of the natural variability in water temperature during BOMEX using alternative forms of the vertical eddy exchange coefficients. J Phys Oceanogr 8:119–141

    Article  Google Scholar 

  • Kantha LH, Clayson CA (1994) An improved mixed layer model for geophysical applications. J Geophys Res 99:25235–25266

    Article  Google Scholar 

  • Kantha LH, Clayson CA (2004) On the effect of surface gravity waves on the mixing in the oceanic mixed layer. Ocean Model 6:101–124

    Article  Google Scholar 

  • Large WG, McWilliams JC, Doney SC (1994) Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Rev Geophys 32:363–403

    Article  Google Scholar 

  • Levitus S (1982) Climatological atlas of the world ocean. NOAA Prof. Paper No. 13, US Government Printing Office, 173

  • Lin X, Xie S-P, Chen X, Xu L (2006) A well-mixed warm water column in the central Bohai Sea in summer: effects of tidal and surface wave mixing. J Geophys Res 111:C11017. doi:10.1029/2006JC003504

    Article  Google Scholar 

  • Lü X, Qiao F, Xia C, Zhu J, Yuan Y (2006) Upwelling off Yangtze River estuary in summer. J Geophys Res 111:C11S08. doi:10.1029/2005JC003250

    Article  Google Scholar 

  • Malcherek A (2003) A consistent derivation of the wave–energy equation from basic hydrodynamic principles. Ocean Dyn 53:302–308

    Article  Google Scholar 

  • Martin PJ (1985) Simulation of the mixed layer at OWS November and Papa with several models. J Geophys Res 90:581–597

    Article  Google Scholar 

  • Matsumo T, Lee JS, Shimizu M, Kim SH, Pang IC (2006) Measurements of the turbulent energy dissipation rate ε and an evaluation of the dispersion process of the Changjiang Diluted Water in the East China Sea. J Geophys Res 111:C11S09. doi:10.1029/2005JC003196

    Article  Google Scholar 

  • McWilliams JC, Restrepo JM (1999) The wave-driven ocean circulation. J Phys Oceanogr 29:2523–2540

    Article  Google Scholar 

  • Mellor GL (2001) One dimensional, ocean surface layer modeling: a problem and a solution. J Phys Oceanogr 31:790–809

    Article  Google Scholar 

  • Mellor GL (2003) The three-dimensional current and wave equations. J Phys Oceanogr 33:1978–1989

    Article  Google Scholar 

  • Mellor GL (2008) The three dimensional, current and surface wave equations: a revision. J Phys Oceanogr 38:2587–2596

    Article  Google Scholar 

  • Mellor GL, Blumberg AF (2004) Wave breaking and ocean surface layer thermal response. J Phys Oceanogr 34:693–698

    Article  Google Scholar 

  • Mellor GL, Yamada T (1982) Development of a turbulence closure model for geophysical fluid problems. Rev Geophys Space Phys 20:851–875

    Article  Google Scholar 

  • Phillips OM (1961) A note on the turbulence generated by gravity waves. J Geophys Res 66:2889–2893. doi:10.1029/JZ066i009p02889

    Article  Google Scholar 

  • Qiao F et al (1999) The study of wind, wave, current extreme parameters and climatic characters of the South China Sea. Mar Technol Soc J 33(1):61–68

    Article  Google Scholar 

  • Qiao F, Yuan Y, Yang Y, Zheng Q, Xia C, Ma J (2004a) Wave-induced mixing in the upper ocean: distribution and application in a global ocean circulation model. Geophys Res Lett 31:L11303. doi:10.1029/2004GL019824

    Article  Google Scholar 

  • Qiao F, Ma J, Yang Y, Yuan Y (2004b) Simulation of the temperature and salinity along 36°N in the Yellow Sea with a wave–current coupled model. J Kor Soc Oceanogr 39(1):35–45

    Google Scholar 

  • Qiao F, Yang Y, Lü X, Xia C, Chen X, Wang B, Yuan Y (2006) Coastal upwelling in the East China Sea in winter. J Geophys Res 111:C11S06. doi:10.1029/2005JC003264

    Article  Google Scholar 

  • Qiao F, Yang Y, Xia C, Yeli Y (2008) The role of surface waves in the ocean mixed layer. Acta Oceanolog Sin 27(3):30–37

    Google Scholar 

  • Song Z, Qiao F, Yang Y, Yuan Y (2007) An improvement of the too cold tongue in the tropical Pacific with the development of an ocean–wave–atmosphere coupled numerical model. Prog Nat Sci 17(5):576–583

    Article  Google Scholar 

  • Stacey MW (1999) Simulations of the wind-forced near-surface circulation in Knight Inlet: a parameterization of the roughness length. J Phys Oceanogr 29:1363–1367

    Article  Google Scholar 

  • Terray EA, Donelan MA, Agrawal YC, Drennan WM, Kahma KK, III AJW, Hwang PA, Kitaigorodski SA (1996) Estimates of kinetic energy dissipation under breaking waves. J Phys Oceanogr 26:792–807

    Article  Google Scholar 

  • Xia C, Qiao F, Yang Y, Ma J, Yuan Y (2006) Three-dimensional structure of the summertime circulation in the Yellow Sea from a wave–tide–circulation coupled model. J Geophys Res 111:C11S03. doi:10.1029/2005JC003218

    Article  Google Scholar 

  • Yang Y, Qiao F, Zhao W, Teng Y, Yuan Y (2005) The development and application of the MASNUM wave numerical model in spherical coordinates. Acta Oceanolog Sin 27(2):1–7 (in Chinese)

    Google Scholar 

  • Yu W, Qiao F, Yuan Y, Pan Z (1997) Numerical modeling of wind and waves for Typhoon Betty (8710). Acta Oceanolog Sin 16(4):459–473

    Google Scholar 

  • Yuan Y, Hua F, Pan Z, Sun L (1991) LAGFD-WAM numerical wave model I. Basic physical model. Acta Oceanolog Sin 10(4):483–488

    Google Scholar 

  • Yuan Y, Qiao F, Hua F, Wan Z (1999) The development of a coastal circulation numerical model: 1. Wave-induced mixing and wave–current interaction. J Hydrodyn Ser A 14:1–8 (in Chinese)

    Google Scholar 

Download references

Acknowledgements

This study is supported by the Key Project of National Natural Science Foundation of China (grant no. 40730842). TE is partly supported by NSF as part of the Climate Process Team (CPT) project and by additional NOAA grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fangli Qiao.

Additional information

Responsible Editor: Yasumasa Miyazawa

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiao, F., Yuan, Y., Ezer, T. et al. A three-dimensional surface wave–ocean circulation coupled model and its initial testing. Ocean Dynamics 60, 1339–1355 (2010). https://doi.org/10.1007/s10236-010-0326-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-010-0326-y

Keywords

Navigation