Skip to main content

Advertisement

Log in

Development of a modelling methodology for simulation of long-term morphological evolution of the southern Baltic coast

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

The Darss–Zingst peninsula at the southern Baltic Sea is a typical wave-dominated barrier island system which includes an outer barrier island and an inner lagoon. The formation of the Darss–Zingst peninsula dates back to the Littorina Transgression onset about 8,000 cal BP. It originated from several discrete islands, has been reshaped by littoral currents, wind-induced waves during the last 8,000 years and evolved into a complex barrier island system as today; thus, it may serve as an example to study the coastal evolution under long-term climate change. A methodology for developing a long-term (decadal-to-centennial) process-based morphodynamic model for the southern Baltic coastal environment is presented here. The methodology consists of two main components: (1) a preliminary analysis of the key processes driving the morphological evolution of the study area based on statistical analysis of meteorological data and sensitivity studies; (2) a multi-scale high-resolution process-based model. The process-based model is structured into eight main modules. The two-dimensional vertically integrated circulation module, the wave module, the bottom boundary layer module, the sediment transport module, the cliff erosion module and the nearshore storm module are real-time calculation modules which aim at solving the short-term processes. A bathymetry update module and a long-term control function set, in which the ‘reduction’ concepts and technique for morphological update acceleration are implemented, are integrated to up-scale the effects of short-term processes to a decadal-to-centennial scale. A series of multi-scale modelling strategies are implemented in the application of the model to the research area. Successful hindcast of the coastline change of the Darss–Zingst peninsula for the last 300 years validates the modelling methodology. Model results indicate that the coastline change of the Darss–Zingst peninsula is dominated by mechanisms acting on different time scales. The coastlines of Darss and the island of Hiddensee are mainly reshaped by long-term effects of waves and longshore currents, while the coastline change of the Zingst peninsula is due to a combination of long-term effects of waves and short-term effects caused by wind storms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  • Bailard JA (1981) An energetics total load sediment transport model for a plane sloping beach. Journal of Geophysical Research 86 (C2) 10:938–954

    Google Scholar 

  • Bouws E, Guenther H, Rosenthal W, Vincent CL (1985) Similarity of the wind spectrum in finite depth water I. Spectral form. J Geophys Res 90:975–986

    Article  Google Scholar 

  • Budetta P, Galietta G, Santo A (2000) A methodology for the relation between coastal cliff erosion and the mechanical strength of soils and rock masses. Eng Geol 56:243–256

    Article  Google Scholar 

  • Cayocca F (2001) Long-term morphological modeling of a tidal inlet: the Arcachon Basin, France. Coast Eng 42:115–142

    Article  Google Scholar 

  • Christiansen C, Edelvang K, Emeis K et al (2002) Material transport from the near shore to the basinal environment in the southern Baltic Sea: I: processes and mass estimates. J Mar Syst 35:133–150

    Article  Google Scholar 

  • Curschmann F (1950) Matrikelkarten von Vorpommern: 1692-1698, Karten und Texte, 1. Carl Hinstorff Verlag, Teil.-Rostock

    Google Scholar 

  • Dastgheib A, Roelvink JA, Wang ZB (2008) Long term process-based morphological modelling of the Marsdiep tidal basin. Mar Geol 256:90–100

    Article  Google Scholar 

  • de Vriend HJ, Copabianco M, Chesher T, De Swart HE, Latteux B, Stive MJF (1993a) Long term modelling of coastal Morphology. Coast Eng 21:225–269

    Article  Google Scholar 

  • de Vriend HJ, Zyserman J, Nicholson J, Roelvink JA, Pechon P, Southgate HN (1993b) Medium term 2DH coastal area modelling. Coast Eng 21:193–224

    Article  Google Scholar 

  • Diesing M, Furmanczyk K, Hanson H, Niedermeyer RO, Pruszak Z (1999) Present fluxes of inorganic matter in Pomeranian Bay. 3rd BASYS Final Conference, Institut fur Ostseeforschung Warnemunde, Warnemunde. Available at: http://www.io-warnemuende.de/Projects/Basys/bio/con3/con3top.htm#T2-10

  • Dissanayake DMPK, Roelvink JA (2007) Process-based approach on tidal inlet evolution-Part 1. In: Janssen D, Hulscher (eds) River, Coastal and Estuarine Morphodynamics: RCEM 2007. Taylor & Francis Group, London, ISBN 978-0-415-45363-9

  • Donelan MA (1977) A simple numerical model for wave and wind stress application. Report, National Water Research Institute, Burlington, 28 pp

    Google Scholar 

  • Emeis K, Christiansen C, Edelvang K et al (2002) Material transport from the near shore to the basinal environment in the southern Baltic Sea: II: synthesis of data on origin and properties of material. J Mar Syst 35(3–4):151–168

    Article  Google Scholar 

  • Fagherazzi S, Overeem I (2007) Models of deltaic and inner continental shelf landform evolution. Annu Rev Earth Planet Sci 35:685–715

    Article  Google Scholar 

  • Froehle P, Dimke S (2008) Sediment Transport at the Coast of Mecklenburg-Vorpommern, Germany. In: Smith JM (ed.) Proceedings of the 31st international conference on Coastal Engineering, Hamburg, Germany, 3. pp 2471–2480

  • Froehle P, Kohlhase S (2004) The role of coastal engineering in integrated coastal zone management. In: Schernewski G, Löser N (eds) Managing the Baltic Sea, Coastline Reports 2, ISSN 0928-2734 S. 167-173

  • Glenn SM, Grant WD (1987) A Suspended Sediment Stratification Correction for Combined Wave and Current Flows. J Geophys Res 92(C8):8244–8264

    Article  Google Scholar 

  • Grant WD, Madsen OS (1979) Combined wave and current interaction with a rough bottom. J Geophys Res 84:1797–1808

    Article  Google Scholar 

  • Harff J, Lemke W, Lampe R, Lüth F, Lübke H, Meyer M, Tauber F, Schmölcke U (2007) The Baltic Sea Coast-A model of interrelations among geosphere, climate, and anthroposphere. In: Harff J, Hay WW, Tetzlaff DM (eds.) Coastline Changes: Interrelation of Climate and Geological Processes. The Geological Society of America, Special Paper, 426:133–142

  • Hasselmann K, Barnett TP, Bouws E, Carlson H, Cartwright DE, Enke K, Ewing JA, Gienapp H, Hasselmann DE, Kruseman P, Meerburg A, Mueller P, Olbers DJ, Richter K, Sell W, Walden H (1973) Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Deutsche Hydrographische Zeitschrift, Erganzungsheft, A8, 12, p 95

  • HydroQual, Inc (2002) A Primer for ECOMSED version 1.3. (computer program manual): Mahwah, New Jersey, HydroQal, Inc.

  • Jimenez JA, Arcilla AS (2004) A long-term (decadal scale) evolution model for microtidal barrier systems. Coast Eng 51:749–764

    Article  Google Scholar 

  • Jones OP, Petersen OS, Hansen HK (2007) Modelling of complex coastal environments: Some considerations for best practise. Coast Eng 54:717–733

    Article  Google Scholar 

  • Kliewe H (1995) Zeit- und Klimamarken in Sedimenten der südlichen Ostsee und ihrer Vorpommerschen Boddenküste. J Coas Res Special Issue 17:181–186

    Google Scholar 

  • Kolp O (1978) Das Wachstum der Landspitze Darsser Ort. Petermanns Geogr Mitt 122:103–111

    Google Scholar 

  • Kuhrts C, Fennel W, Seifert T (2004) Model studies of transport of sedimentary material in the western Baltic. J Mar Syst 52:167–190

    Article  Google Scholar 

  • Lampe R (2002) Holocene evolution and coastal dynamics of the Fischland Darss Zingst peninsula. Greifswald Geogr Arb 27(D1):155–163

    Google Scholar 

  • Lampe R (2005) Lateglacial and Holocene water-level variations along the NE German Baltic Sea coast: review and new results. Quatern Int 133–134:121–136

    Article  Google Scholar 

  • Latteux B (1995) Techniques for long-term morphological simulation under tidal action. Mar Geol 126:129–141

    Article  Google Scholar 

  • Lesser GR, Roelvink JA, van Kester JATM, Stelling GS (2004) Development and validation of a three-dimensional morphological model. Coast Eng 51(8–9):883–915

    Article  Google Scholar 

  • Longuet-Higgins MS, Stewart RW (1964) Radiation stresses in water waves, a physical discussion with applications. Deep-Sea Res 11:529–562

    Google Scholar 

  • Masetti R, Fagherazzi S, Montanari A (2008) Application of a barrier island translation model to the millennial-scale evolution of Sand Key, Florida. Cont Shelf Res 28:1116–1126

    Article  Google Scholar 

  • McCall RT, Thiel V, de Vries JSM, Plant NG, Van Dongeren AR, Roelvink JA, Thompson DM, Reniers AJHM (2010) Two dimensional time dependent hurricane overwash and erosion modelling at Santa Rosa Island. Coast Eng 57:668–683

    Article  Google Scholar 

  • Meyer M, Harff J, Gogina M, Barthel A (2008) Coastline changes of the Darss-Zingst peninsula—a modeling approach. J Mar Syst 74:S147–S154

    Article  Google Scholar 

  • Muller A (2001) Late- and Postglacial sea level change and paleoenvironment in the Oder estuary, southern Baltic Sea. Quatern Res 55(1):86–96

    Article  Google Scholar 

  • Oey LY (2005) A wetting and drying scheme for POM. Ocean Model 9:133–150

    Article  Google Scholar 

  • Otto T (1913) Der Darss und Zingst: Ein Beitrag zur Entwicklungsgesch-ichte der vorpommerschen küste. Jahresber-Geography-Gesells Greifswald 13:237–485

    Google Scholar 

  • Roelvink JA (2006) Coastal morphodynamic evolution techniques. Coast Eng 53:277–287

    Article  Google Scholar 

  • Roelvink JA, Reniers AD, van Dongeren AP, van Thiel de VJ, McCall R, Lescinski J (2009) Modelling storm impacts on beaches, dunes and barrier islands. Coast Eng 56(11–12):1133–1152

    Article  Google Scholar 

  • Schiewer U (2008) Chapter 2: The Baltic coastal zones. In: Schiewer U (ed) Ecology of Baltic coastal waters. Springer, Berlin. doi:10.1007/978-3-540-73524-3

  • Schumacher W (2002) Coastal evolution of the Darss Peninsula. Greifswald Geogr Arb 27(D2):165–168

    Google Scholar 

  • Schumacher W, Bayerl KA (1999) The shoreline displacement curve of Rügen Island (Southern Baltic Sea). Quatern Int 56:107–113

    Article  Google Scholar 

  • Schwab DJ, Bennett JR, Liu PC, Donelan MA (1984) Application of a simple numerical wave prediction model to lake Erie. J Geophys Res 89:3586–3592

    Article  Google Scholar 

  • Schwarzer ML (1973) Barrier Islands. Benchmark Papers in Geology (series). Dowden, Hutchin-son, and Ross, Stroudsburg, 451p

    Google Scholar 

  • Schwarzer K, Diesing M (2003) Coastline evolution at different time scales - examples from the Pomeranian Bight, southern Baltic Sea. Mar Geol 194:79–101

    Article  Google Scholar 

  • Seifert T, Fennel W, Kuhrts C (2009) High resolution model studies of transport of sedimentary material in the south-western Baltic. J Mar Syst 75:382–396

    Article  Google Scholar 

  • Smagorinsky J (1963) General circulation experiments with the primitive equations, I, The basic experiment. Mon Weather Rev 91:99–164

    Article  Google Scholar 

  • Rostock S (1994) Generalplan Küsten-und Hochwasserschutz Mecklenburg-Vorpommern. Landesentwick-lung und Umwelt Mecklenburg-Vorpommern, Ministerium für Bau, 108 pp

    Google Scholar 

  • Sunamura T (1992) Geomorphology of rocky coasts. Wiley, Chichester

    Google Scholar 

  • van Rijn LC, Nieuwjaar MWC, vanderKaay T, Nap E, von Kampen A (1993) Transport of fine sands by currents and waves. ASCE J Hydraul Eng 119:123–143

    Google Scholar 

  • von Storch H, Langenberg H, Feser F (2000) A spectral nudging technique for dynamical downscaling purposes. Mon Weather Rev 128:3664–3673

    Article  Google Scholar 

  • Weisse R, Hv S, Callies U, Chrastansky A, Feser F, Grabemann I, Guenther H, Pluess A, Stoye T, Tellkamp J, Winterfeldt J, Woth K (2009) Regional meteo-marine reanalyses and climate change projections: Results for Northern Europe and potentials for coastal and offshore applications. Bull Am Meteorol Soc 90:849–860

    Article  Google Scholar 

  • Wu CY, Bao Y, Ren J, Shi HY (2006) A numerical simulation and mophodynamic analysis on the evolution of the Zhujiang River Delta in China: 6000 ∼ 2500 a BP. Acta Oceanol Sin 28(4):64–80

    Google Scholar 

  • Wu CY, Ren J, Bao Y, LEI YP, Shi HY, He ZG (2007) A long-term hybrid morphological modelling study on the evolution of the Pearl River delta, network system and estuarine bays since 6000 aBP, In: Harff J, Hay WW, Tetzlaff DM (eds.) Coastline Changes: Interrelation of Climate and Geological Processes. The Geological Society of America, Special Paper 426:199–214

  • Zhang WY, Harff J, Schneider R, Wu CY (2010a) A multi-scale centennial morphodynamic model for the southern Baltic coast. J Coast Res. doi:10.2112/jcoastres-d-10-00055.1

Download references

Acknowledgements

We thank the reviewers for their valuable comments. The historical wind data (1958–2007) of the Baltic Sea were kindly provided by Dr. R.Weisse. The simulations were carried out at the supercomputing facilities of the MPI-IPP (Max-Plank-Institute for Plasma Physics) in Greifswald and Garching, Germany. The research work is supported by the SINCOS project. One author (Zhang, W.Y.) is supported by a scholarship offered by the China Scholarship Council (CSC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenyan Zhang.

Additional information

Responsible Editor: Birgit Andrea Klein

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, W., Harff, J., Schneider, R. et al. Development of a modelling methodology for simulation of long-term morphological evolution of the southern Baltic coast. Ocean Dynamics 60, 1085–1114 (2010). https://doi.org/10.1007/s10236-010-0311-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-010-0311-5

Keywords

Navigation