Skip to main content

Advertisement

Log in

Numerical experiments of air–ice drag coefficient and its impact on ice–ocean coupled system in the Sea of Okhotsk

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

Sensitivity study of the airice drag coefficient C Dai is presented with an iceocean coupled model for the Sea of Okhotsk. The C Dai × 103 value is varied from 2 to 5 based on the direct measurements in the region. The maximum volume transport of the East Sakhalin Current and the mean sea ice velocity were intensified as C Dai increased. The sensitivity experiment with the icewater drag coefficient C Diw showed that the East Sakhalin Current volume transport is hardly affected by C Diw but significantly intensified by C Dai. While the ice drift in the off-ice-edge direction was intensified by the increase in C Dai and the decrease in C Diw, the ice edge location was nearly unchanged. This was due to melting caused by the relatively warm water inflow from the North Pacific. That is, sea ice extent in the region is strongly influenced by melting caused by a large iceocean heat transfer. In the active melting regions, the iceocean heat transfer of more than 100 W/m2 occurred even in mid-winter. This is the same order as the cooling by air in winter, and a heat insulation capacity of sea ice is weakened in such regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Fujisaki A, Yamaguchi H, Toyota T, Futatsudera A, Miyanaga M (2009) Measurements of air–ice drag coefficient over the ice-covered Sea of Okhotsk. J Oceanogr 65:487–498

    Article  Google Scholar 

  • Gladyshev S, Talley L, Kantakov G, Khen G, Wakatsuchi M (2003) Distribution, formation, and seasonal variability of Okhotsk Sea Mode Water. J Geophys Res 108(C6):3186. doi:10.1029/2001JC000877

    Article  Google Scholar 

  • Guest PS, Davidson KL (1991) The aerodynamic roughness of different types of sea ice. J Geophys Res 96(C3):4709–4721. doi:10.1029/90JC02261

    Article  Google Scholar 

  • Hibler WD (1979) Dynamic thermodynamics sea ice model. J Phys Oceanogr 9:815–846. doi:10.1175/1520-0485(1979)009<0815:ADTSIM>2.0.CO;2

    Article  Google Scholar 

  • Hunke EC, Duckowicz JK (1997) An elastic-viscous-plastic model for sea ice dynamics. J Phys Oceanogr 27:1849–1867. doi:10.1175/1520-0485(1997)027<1849:AEVPMF>2.0.CO;2

    Article  Google Scholar 

  • Itoh M, Ohshima KI, Wakatsuchi M (2003) Distribution and formation of Okhotsk Sea intermediate water: an analysis of isopycnal climatological data. J Geophys Res 108(C8):14. doi:10.1029/2002JC001590

    Article  Google Scholar 

  • Lapko VV, Radchenko VI (2000) Sea of Okhotsk. Mar Pollut Bull 41(1–6):179–187. doi:10.1016/S0025-326X(00)00109-0

    Article  Google Scholar 

  • Large WG, Pond S (1981) Open ocean momentum flux measurements in moderate to strong winds. J Phys Oceanogr 11(3):324–336. doi:10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2

    Article  Google Scholar 

  • Leppäranta M (2005) The drift of sea ice. Springer, Berlin

    Google Scholar 

  • Levitus, S, Burgett R, Boyer TP (1994) Salinity. World Ocean Atlas 1994. NOAA Atlas NESDIS. 3(99)

  • Matsuda J, Mitsudera H, Nakamura T, Uchimoto K, Nakanowatari T, Ebuchi N (2009) Wind and buoyancy driven intermediate-layer overturning in the Sea of Okhotsk. Deep-Sea Res 56:1401–1418

    Article  Google Scholar 

  • McPhee MG, Kottmeier C, Morrison JH (1998) Ocean heat flux in the Central Weddell Sea during winter. J Phys Oceanogr 29(6):1166–1179. doi:10.1175/1520-0485(1999)029<1166:OHFITC>2.0.CO;2

    Article  Google Scholar 

  • McPhee MG, Morison JH, Nilsen F (2008) Revisiting heat and salt exchange at the ice–ocean interface: ocean flux and modeling considerations. J Geophys Res 113(C06014). doi:10.1029/2007JC004383

  • Mizuta G, Fukamachi Y, Ohshima KI (2003) Structure and seasonal variability of the East Sakhalin Current. J Phys Oceanogr 33(11):2430–2445. doi:10.1175/1520-0485(2003)033<2430:SASVOT>2.0.CO;2

    Article  Google Scholar 

  • Nakamura T, Awaji T (2004) Tidally induced diapycnal mixing in the Kuril Straits and its role in water transformation and transport. J Geophys Res 109(C09S07). doi:10.1029/2003JC001850

  • Nakamura T, Toyoda T, Ishikawa Y, Awaji T (2006) Effects of tidal mixing at the Kuril Straits on the North Pacific ventilation: Adjustment of intermediate layer revealed from numerical experiments. J Geophys Res 111(C04003). doi:10.1029/2005JC003142

  • Nakanowatari T, Ohshima KI, Wakatsuchi M (2007) Warming and oxygen decrease of intermediate water in the northwestern North Pacific, originating from the Sea of Okhotsk, 1955–2004. Geophys Res Lett 34(L04602). doi:10.1029/2006GL028243

  • Nishioka J, Ono T, Saito H, Nakatsuka T, Takeda S, Yoshimura T, Suzuki K, Kuma K, Nakabayashi S, Tsumune D, Mitsudera H, Johnsin WK, Tsuda A (2007) Iron supply to the western subarctic Pacific: Importance of iron export from the Sea of Okhotsk. J Geophys Res 112(C10012). doi:10.1029/2006JC004055

  • Ohshima KI, Wakatsuchi M, Fukamachi Y (2002) Near-surface circulation and tidal currents of the Okhotsk Sea observed with satellite-tracked drifters. J Geophys Res 107(C11):C16

    Article  Google Scholar 

  • Ohshima KI, Watanabe T, Nihashi S (2003) Surface Heat Budget of the Sea of Okhotsk during 1987–2001 and the role of sea ice on it. J Meteorol Soc Jpn 81(4):653–677

    Article  Google Scholar 

  • Ohshima KI, Simizu D, Itoh M, Fukamachi Y, Wakatsuchi S (2004) Sverdrup balance and the cyclonic gyre in the Sea of Okhotsk. J Phys Oceanogr 34(2):513–525. doi:10.1175/1520-0485(2004)034<0513:SBATCG>2.0.CO;2

    Article  Google Scholar 

  • Parkinson CL, Washington WM (1979) A large-scale numerical model 789 of sea ice. J Geophys Res 84(C1):311–337

    Google Scholar 

  • Perovich DK, Elder B (2002) Estimates of ocean heat flux at SHEBA. Geophys Res Lett 29(9):58

    Google Scholar 

  • Sagawa G (2007) Development of ice dynamic model that takes account of floe collision and its validation in numerical sea ice forecast in the Sea of Okhotsk, Dissertation, University of Tokyo

  • Semtner AJ (1979) A model for the thermodynamic growth of sea ice in numerical investigations of climate. J Phys Oceanogr 6(3):379–389

    Article  Google Scholar 

  • Shcherbina AY, Talley LD, Rudnick DL (2004a) Dense water formation on the northwestern shelf of the Okhotsk Sea: 1. Direct observations of brine rejection. J Geophys Res 109(C09S08). doi:10.1029/2003JC002196

  • Shcherbina AY, Talley LD, Rudnick DL (2004b) Dense water formation on the northwestern shelf of the Okhotsk Sea: 2. Quantifying the transports. J Geophys Res 109(C09S09). doi:10.1029/2003JC002197

  • Shen H, Hibler W, Leppäranta M (1987) The role of floe collisions in sea ice rheology. J Geophys Res 92(C7):7085–7096

    Article  Google Scholar 

  • Shirasawa K (1981) Studies on wind stress on sea ice. Low Temp Sci Ser A 40:101–118

    Google Scholar 

  • Simizu D, Ohshima KI (2006) A model simulation on the circulation in the Sea of Okhotsk and the East Sakhalin Current. J Geophys Res 111(C05016). doi:10.1029/2005JC002980

  • Tang CL, Detracy BM (1998) Space-time variation of mixed layer properties, heat and salt fluxes, and ice melt in the Newfoundland marginal ice zone. J Geophys Res 103(C1):1177–1191

    Article  Google Scholar 

  • Toyota T, Kawamura T, Ohshima KI, Shimoda H, Wakatsuchi M (2004) Thickness distribution, texture and stratigraphy, and a simple probabilistic model for dynamical thickening of sea ice in the southern Sea of Okhotsk. J Geophys Res 109(C06001). doi:10.1029/2003JC002090

  • Uchimoto K, Mitsudera H, Ebuchi N, Miyazawa Y (2007) Anticyclonic eddy caused by the Soya Warm Current in an Okhotsk OGCM. J Oceanogr 63:379–391

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the sea ice group of office of marine prediction, the Japan Meteorological Agency who provided the sea ice analysis, and the objective analysis by the Regional Spectral Value. We also thank the group of Prof. K.I. Ohshima in the Institute of Low Temperature Science, Hokkaido University, who provided the merged observation data of the sea surface salinity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayumi Fujisaki.

Additional information

Responsible Editor: Leo Oey

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujisaki, A., Yamaguchi, H. & Mitsudera, H. Numerical experiments of air–ice drag coefficient and its impact on ice–ocean coupled system in the Sea of Okhotsk. Ocean Dynamics 60, 377–394 (2010). https://doi.org/10.1007/s10236-010-0265-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-010-0265-7

Keywords

Navigation