Skip to main content
Log in

Mechanism and Remediation of Water and Sand Inrush Induced in an Inclined Shaft by Large-Tonnage Vehicles

Mechanismen und Sanierung von Wasser und Sandeinbrüchen in einen Schacht verursacht durch Großraumfahrzeuge

Mecanismo y remediación de lairrupción de agua y arena inducida en un eje inclinado por vehículos de gran tonelaje

大吨位运输引起的斜井突水溃沙机理及救险措施

  • Technical Communication
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

In August 2016, multiple large-tonnage transport vehicles passed through the inclined shaft of the Jinjitian coal mine, Yulin, China, over a short period of time, resulting in fracturing of the floor, bearing capacity reduction, liquefaction of the underlying sand layer, and a serious water and sand inrush. The inrush and its sand content increased rapidly, with flows up to 72 m3/h, with up to 16% sand. Fractures appeared in the walls of the shaft and nine subsidence pits formed on the ground surface. As the distance between the shaft roof and floor continued to shorten, the mine faced the risk of flooding. Four remedial measures were rapidly taken. First, where the roof and floor was seriously fractured, cribs were constructed to effectively stop the convergence of the roof and floor. Second, grouting was carried out on the periphery of the shaft sides to seal and block the inrush ducts, reducing the inrush by 52% and eliminating the sand content. Then, the cribs were replaced with arched steel supports for permanent support. Finally, the shaft wall behind the sand layer was reinforced with grout, which reduced the water inrush from 34.8 to 2.5 m3/h. After adoption of these measures, the inclined shaft withstood the transport of large-tonnage coal-mining equipment for two work faces without an increase in water flow, floor fracturing, sand inrush, or other similar problems, indicating that the damaged shaft was well remediated. The measures taken provide a good reference for control of similar disasters.

Zusammenfassung

Im August 2016 befuhren zahlreiche Großraumfahrzeuge innerhalb einer kurzen Zeit den Schacht der Jinjitian Kohlemine, Yulin, China. Dies führte dazu, dass die Sohle brach, sich die Tragfähigkeit verringerte und sich die Sandschicht im Liegenden verflüssigte. Dies führte zu einem erheblichen Einbruch von Wasser und Sand. Der Wassereinbruch erhöhte sich auf Durchflüsse bis 72 m³/h. Der Sandgehalt stieg bis auf 16 %. An den Wänden des Schachtes entstanden Risse. An der Geländeoberfläche bildeten sich neun Absenkungstrichter. Da sich der Abstand zwischen Firste und Sohle weiter verringerte, bestand die Gefahr, dass die Mine geflutet wird. Zügig wurden vier Instandsetzungsmaßnahmen ergriffen. Zuerst wurden an Stellen, wo die Firste und Sohle erheblich gebrochen waren, Pfeiler eingezogen, um das weitere Zusammenfallen zu verhindern. Zweitens wurden entlang des Schachtes die Risse abgedichtet, um die Zustrombereiche zu versiegeln und abzusperren. Dies führte zu einer Reduzierung des Wasserzustroms um 52 % und zur Entfernung des Sandanteils. Danach wurden die Pfeiler durch Stahlbögen als Dauerlösung ersetzt. Als letztes wurde die Schachtwand mit Mörtel verstärkt, wodurch der Wasserzustrom von 34,8 auf 2,5 m³/h verringert wurde. Nach Umsetzung der Maßnahmen hielt der Schacht den Bergbaumaschinen ohne Wasser- und Sandeinbrüche, Bruchbildung oder ähnlichen Problemen stand. Dies zeigt, dass der Schacht gut saniert wurde. Die Maßnahmen stellen eine gute Empfehlung für die Beherrschung ähnlicher Havarien dar.

Resumen

En agosto de 2016, múltiples vehículos de transporte de gran tonelaje pasaron por el eje inclinado de la mina de carbón Jinjitian, Yulin, China, en un corto período de tiempo, lo que provocó la fractura del piso, reducción de la capacidad portante, licuefacción de la capa de arena subyacente y una seria irrupción de agua y arena. La irrupción y su contenido de arena aumentaron rápidamente, con flujos de hasta 72 m3/h, con hasta un 16% de arena. Aparecieron fracturas en las paredes del pozo y nueve hoyos de subsidencia formados en la superficie del suelo. Debido a que la distancia entre el techo del pozo y el suelo continuó acortándose, la mina corría el riesgo de inundarse. Cuatro medidas correctivas se tomaron rápidamente. Primero, en los lugares donde el techo y el piso estaban seriamente fracturados, se construyeron soportes para detener efectivamente la convergencia del techo y el piso. En segundo lugar, se realizó la lechada sobre los lados del pozo para sellar y bloquear los conductos de entrada, reduciendo la irrupción en un 52% y eliminando el contenido de arena. Luego, los soportes se reemplazaron con otros de acero arqueados para un soporte permanente. Finalmente, la pared del pozo detrás de la capa de arena se reforzó con cemento, lo que redujo la entrada de agua de 34,8 a 2,5 m3/h. Después de la adopción de estas medidas, el eje inclinado resistió el transporte de equipos de minería de carbón de gran tonelaje para dos caras de trabajo sin un aumento en el flujo de agua, fractura de piso, acumulación de arena u otros problemas similares, lo que indica que el pozo dañado fue remediado. Las medidas tomadas proporcionan una buena referencia para el control de desastres similares.

抽象

2016年,多台大吨位运输车短时间通过榆林(中国)金鸡滩煤矿斜井,导致底板裂隙发育,承载能力降低,下伏沙层液化,诱发严重突水溃沙。突水量与含沙量迅速增大,流量达72 m3/h,含沙量高达16%。斜井井壁也出现裂缝,地面形成九个塌陷坑。随斜井顶与底间距继续缩小,矿井面临淹井危险。采取了四项补救措施:第一,在顶、底裂隙发育的地方搭建木垛,有效阻止顶、底收敛;第二,井壁四周注浆封堵溃沙通道,减小52%涌水量,消除水中含沙量;第三,用钢拱形支护替代木垛做永久支护;最后,注浆加固沙层后井壁,使涌水量由34.8 m3/h减少至2.5 m3/h。经以上治理,斜井可以承受两个工作面大吨位采煤设备通行,未再引起涌水量增大、底板裂隙、溃沙等类似问题,受损斜井修复效果较好。救险措施对类似灾害具有很好借鉴意义。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  • China Coal Network (2016) Yanzhou coal industry has successfully developed the world’s first set of 8.2 m super high variety technology and equipment. http://www.coalchina.org.cn/detail/16/06/24/00000016/content.html?path=16/06/24/00000016. Accessed 24 June 2016 (in Chinese)

  • Fang YM, Tao RM (2014) Ground freezing monitoring and control of mineshaft repair project. Mine Constr Technol 35(04):8–11 (in Chinese, abstract in English)

    Google Scholar 

  • Luan YZ, Wang YZ (2001) A real time observation and catastrophe model of shaft damage for Jinqiao shaft deformation. J Jiaozuo Inst Technol (Nat Sci) 20(02):90–93 (in Chinese, abstract in English)

    Google Scholar 

  • Luan YZ, Tong WL, Zhong SQ (2000) Discussion on monitoring technology of shaft deformation in Jinqiao coal mine. Mine Surv 20(04):13–15 (in Chinese, abstract in English)

    Google Scholar 

  • Luan YZ, Zhao XH, Han LT (2001) Surface movement and deformation calculation caused by wellbore flooding. Nonferr Met 30(04):24–26 (in Chinese, abstract in English)

    Google Scholar 

  • Ren YQ (2014) Case of water flooding in a coal mine. http://www.docin.com/p-1174127503.html. Accessed 24 June 2014

  • Tao WM (2016) Application of high density seismic exploration in exploration of influence range of permeable and sand inrush. Coal Technol 35(12):200–201 (in Chinese, abstract in English)

    Google Scholar 

  • Tu XY (2008) Research on the treatment technology of the auxiliary shaft wall in Xinyi Mine. China University of Mining and Technology, Xuzhou, pp 30–50 (in Chinese, abstract in English)

    Google Scholar 

  • Wang CT, Zhang SM, Zhou DP et al (2004) The technology of injection of injection perforation in the secondary well of jinqiao coal mine. Mine Constr Technol 25(01):1–3 (in Chinese, abstract in English)

    Google Scholar 

  • Xu GJ (1983) Panyi coal mine shaft repair experience. Coal Sci Technol 10(09):7–10 (in Chinese, abstract in English)

    Google Scholar 

  • Zhang P (2009) Study on characteristics and maintenance of shaft damage due to the extraction of industry square pillar. Henan Polytechnic University, Jiaozuo, pp 34–36 (in Chinese, abstract in English)

    Google Scholar 

  • Zhang H (2016) Study on the deformation mechanism of shaft lining of Qianyingzi coal mine in Su-Nan mining area. China University of Mining and Technology, Xuzhou, pp 20–30 (in Chinese, abstract in English)

    Google Scholar 

  • Zhu QK (2006) Study of the comprehensive government of grouting and sealing up by concrete curtain on caiyuan coal mine auxiliary shaft. Shandong University of Science and Technology, Qingdao, pp 34–44 (in Chinese, abstract in English)

    Google Scholar 

Download references

Acknowledgements

The National Science Youth Foundation of China (Grant 41602299), and the State Basic Research and Development Program of China (Grant 2013CB036003) are gratefully acknowledged for their funding of this work. We also thank Professor Yang Weihao (China University of Mining and Technology) for his assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zi-wei Qian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, Zw., Jiang, Zq., Guan, Yz. et al. Mechanism and Remediation of Water and Sand Inrush Induced in an Inclined Shaft by Large-Tonnage Vehicles. Mine Water Environ 37, 849–855 (2018). https://doi.org/10.1007/s10230-018-0531-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-018-0531-3

Keywords

Navigation