Skip to main content

Advertisement

Log in

Influence of Drainage with High Levels of Water-Soluble Salts on the Environment in the Verhnekamskoe Potash Deposit, Russia

俄罗斯Verhnekamskoe钾盐矿富盐废水对环境的影响

Der Einfluss von Drainagewasser mit hohen Gehalten an wasserlöslichen Salzen auf die Umwelt der Verhnekamskoe Salzlagerstätte, Russland

Influencia de drenajes con altos niveles de sales solubles en agua sobre el medio ambiente en el depósito de potasa Verhnekamskoe, Rusia

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

Saline drainage from slurry storage facilities can deteriorate the properties of clay barriers in the beds of embankment dams and slurry ponds and cause saline drainage to infiltrate into groundwater. The chemistry of slurry material, drainage, springs, surface water, and soils was studied near the slurry storage facility of the Verhnekamskoe potash mine (Russia). Our study showed that the Na–Cl type mine drainage water, with high amounts of nitrogen compounds, increased the salinity of the groundwater and surface water, and the river valley ecosystems. As a result of ion exchange and leaching, the soil, groundwater, and surface water have elevated levels of \({\text{C}}{{\text{a}}^{2+}}\), \({\text{M}}{{\text{g}}^{2+}}\), \({\text{SO}}_{4}^{{2 - }},\) and \({\text{F}}{{\text{e}}_{{\text{total}}}}\), and extremely high \({\text{~N}}{{\text{a}}^+}\) and \({\text{C}}{{\text{l}}^ - }{\text{~}}\) values. Iron-rich precipitates and hydrogen sulfide tend to form down-gradient in the saline, water-logged seepage areas.

抽象

尾矿库富盐废水能够破坏坝体和库底泥质隔离层,引起盐水入渗地下水。测试了俄罗斯Verhnekamskoe钾盐矿尾矿库附近尾矿浆、尾矿废水、泉水、地表水和土壤的化学成分。结果表明:Na-Cl型尾矿废水含有大量氮化合物,已使地下水、地表水和河谷生态系统的盐度(矿化度)增高。离子交换与溶滤作用使土壤、地下水和地表水含有高水平Ca2+、 Mg2+、SO42-、总铁和极高水平Na+和Cl-。盐沼地内富铁沉淀和硫化氢呈向下递减特征。

Zusammenfassung

Salzhaltige Abflüsse aus Schlammspeicherbecken können die Eigenschaften von Tonbarrieren am Fuß von Dammböschungen und Schlammbecken verschlechtern. Es kann somit zu salinaren Einträgen in das Grundwasser kommen. Die chemische Zusammensetzung des Schlammmaterials sowie des Drainage-, Quell- und Oberflächenwassers und der Böden in der Umgebung von organikreichen Schlammspeichern der Verhnekamskoe Salzmine (Russland) wurde untersucht. Diese Untersuchungen zeigen Drainagewasser des Na-Cl-Typs mit hohen Gehalten an Stickstoffkomponenten und eine steigende Salinität im Grund- und Oberflächenwasser sowie im fluvialen Ökosystem. Aufgrund von Ionentausch und Auslaugungsvorgängen weisen die Böden sowie das Grund- und Oberflächenwasser erhöhte Gehalte an Ca2+, Mg2+, SO42- und Feges sowie sehr hohe Gehalte an Na+ und Cl- auf. In abstromig gelegenen, staunassen Bereichen bilden sich tendenziell schwefelwasserhaltige Bereiche mit eisenreichen Präzipitaten aus.

Resumen

El drenaje salino de las instalaciones de almacenamiento de lodos puede deteriorar las propiedades de las barreras de arcilla en los lechos de presas de terraplén y estanques de lodos y hacer que el drenaje salino se infiltre en las aguas subterráneas. Se estudió la química del material de la suspensión, el drenaje, los manantiales, las aguas superficiales y los suelos cerca de la instalación de almacenamiento de lodos de la mina de potasa de Verhnekamskoe (Rusia). Este estudio mostró que el agua de drenaje de la mina tipo Na-Cl, con altos valores de compuestos nitrogenados, incrementó la salinidad del agua subterránea y del agua superficial los ecosistemas del valle del río. Como un resultado del intercambio iónico y la lixiviación, suelo, agua subterránea y agua superficial tienen altos niveles de Ca(2+), Mg(2+), SO4(2-), Fe total y extremadamente altos niveles de Na(+) y Cl(-). Los precipitados ricos en hierro y el sulfuro de hidrógeno tienen a formar gradientes corriente abajo en las áreas de filtración de agua salada.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arle J, Wagner F (2013) Effect of anthropogenic salinisation on the ecological status of macroinvertebrate assemblages in the Werra River (Thuringia, Germany). Hydrobiologia 701:129–148

    Article  Google Scholar 

  • Bachurin BA, Baboshko (2008) Ecological and geochemical characteristics of the potash production wastes. Gornyj žurnal 10:88–91 (Russian)

    Google Scholar 

  • Bachurin BA, Smetannikov AF, Khokhryakova ES (2014) Environmental and geochemical assessment of processing products of clay-salt slurries generated by potash mining operations. Sovrem Probl Nauki I Obrazovaniya (Mod Probl Sci Educ), no. 6. http://www.science-education.ru/ru/article/view?id=15442. Accessed 25 Aug 2017

  • Barbour SL, Yang N (2011) A review of the influence of clay-brine interactions on the geothechnical properties of Ca-montmorillonitic clayey soils from western Canada. Can Geotech J 30(6):920–934

    Article  Google Scholar 

  • Baure M, Eichinger L, Elsass P, Kloppmann W, Wirsing G (2005) Isotopic and hydrochemical studies of groundwater flow and salinity in the southern Rhine Graden. Int J Earth Sci 94:565–579

    Article  Google Scholar 

  • Bazilevich NI, Pankova EI (1968) Metodicheskie ukazaniya po uchetu zasolyonnyih pochv (Methodological instructions for the calculation of saline soils). Moscow. p 92 (in Russian)

  • Bel’tyukov GV (1996) Main sources of contamination of groundwater and surface waters in the area of the Verhnekamskoe potash deposit. Vestnik Permskogo Univ (Bull Perm Univ) Ecol 4:128–140 (in Russian)

    Google Scholar 

  • Fetisov VV (2016) Modeling the interaction of mine brines with chloride minerals of potassium-magnesium deposits. IOP Conference Series: Earth and Environmental Science, vol 33. p 012016

  • Fetisova NF, Fetisov VV, Maio MDe, Zekster IS (2016) Groundwater vulnerability assessment based on calculation of chloride travel time through the unsaturated zone on the area of the Upper Kama potassium salt deposit. Environ Earth Sci 75:681. https://doi.org/10.1007/s12665-016-5496-6

    Article  Google Scholar 

  • GN 2.1.5.1315-03 (2003) Gigienicheskie normativyi “Predelno dopustimyie kontsentratsii (PDK) himicheskih veschestv v vode vodnyih ob’ektov hozyaystvenno-pitevogo i kulturno-byitovogo vodopolzovaniya (Hygienic standards” Maximum allowable concentrations (MACs) of chemical elements in water of water bodies of domestic, drinking and cultural and domestic water use). Moscow (in Russian)

  • Kharitonov TV, Vedernikova KA, Ivanova SA (1999) Creating of summary geological and hydrogeological maps of the Verhnekamskoe Potash Deposit of scale 1:100000. JSC “Perm-geocarta”, Perm (Russian)

    Google Scholar 

  • Khayrulina E (2016) Aspects of the environmental monitoring on the territory of Verhnekamskoye Potash Deposit (Russia). In: Mining Meets Water—Conflicts and Solutions. Proc, IMWA 2016 Annual Conf. Leipzig, pp 383–387. https://www.imwa.info/docs/imwa_2016/IMWA2016_Proceedings.pdf. Accessed 25 Aug 2017

  • Klassifikatsiya pochv Rossii (2000) Classification of Russian Soils. Moscow (in Russian)

  • Kolpashnikov GA, Klement’ev VP, Eremenko YuP (1979) Processes of soil and groundwater salinization by solid wastes generated by Soligorsk potash mining operations. Dokl AN BSSR 14(5):443–446 (in Russian)

    Google Scholar 

  • Kolpashnikov GA, Kroshner IP, Hussain A-SS, Abdul-Hussain A-KRM (2010) Influence of moisture and salt on strength and deformation properties of dispersed soils. Vestnik BNTU 2:5–7 (Russian)

    Google Scholar 

  • Kudryshov AI (2001) Verhnekamskoe salt deposit. Mining Institute of Ural Branch of RAS, Perm (Russian)

    Google Scholar 

  • Kudryshov AI (ed) (2006) Mineralno-syirevyie resursyi Permskogo kraya (Mineral Resources of Perm Region). Perm (in Russian)

  • Liu Y, Lekhov AV (2013) Modeling changes in permeability characteristics of gypsified rocks accompanying brine flow. Water Resour 40(7):776–782

    Article  Google Scholar 

  • Lucas Y, Schmitt AD, Chabaux F, Clément A, Fritz B, Elsass Ph, Durand S (2010) Geochemical tracing and hydrogeochemical modelling of water–rock interactions during salinization of alluvial groundwater (Upper Rhine Valley, France). Appl Geochem 25(11):1644–1663

    Article  Google Scholar 

  • Lyubimova TP, Lepikhin AP, Parshakova YaN, Tsiberkin KB (2016) Numerical modeling of liquid-waste infiltration from storage facilities into surrounding groundwater and surface-water bodies. J Appl Mech Tech Phys 57(7):1208–1216

    Article  Google Scholar 

  • Maksimovich NG, Gorbunova KA (1989) Changes in hydrogeological conditions during construction of a large agro-industrial complex. Inzhenernaya Geol (Eng Geol) 5:61–65 (in Russian)

    Google Scholar 

  • Monyushko AM, Pakhomov SP (1985) Main regularities controlling resistivity of clay soils to the effects of water-flooding and mine drainages (based on experimental data). Inzhenernaya Geol (Eng Geol) 6:35–45

    Google Scholar 

  • Nazarmamedov O (2007) The role of higher aquatic plants in purification of drainage waters. Probl Osvoeniya Pustyn (Probl Desert Dev) 3:48–51 (in Russian)

    Google Scholar 

  • Osipov VI (2012) Density of clay minerals. Soil Mech Found Eng 48(6):231–240

    Article  Google Scholar 

  • Rauche HAM, Fulda D, Schwalm V (2001) Tailings and disposal brine reduction—design criteria for potash production in the 21st century. In: Proceedings of the 8th International Conference on Tailings and Mine Waste, pp 85–94

  • Sliusar N, Zagorskaya Y, Schlee J (2012) Modern approach to the recultivation of dumps and landfills for municipal solid waste. PNRPU Bull Urban Dev 4:84–91 (Russian)

    Google Scholar 

  • United Nations (2001) Environmental Aspects of Phosphate and Potash Mining. 1st edn. Paris

Download references

Acknowledgements

This study was financially supported by the Russian Foundation for Basic Research (Project 15-05-07461), Ministry of Education and Science of the Russian Federation (5.6881.2017). The authors sincerely thank the editors and reviewers for their careful work and thoughtful suggestions. The authors also thank Judy Palmer for her help with this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Khayrulina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khayrulina, E., Maksimovich, N. Influence of Drainage with High Levels of Water-Soluble Salts on the Environment in the Verhnekamskoe Potash Deposit, Russia. Mine Water Environ 37, 595–603 (2018). https://doi.org/10.1007/s10230-017-0509-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-017-0509-6

Keywords

Navigation